Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Sports Act Living ; 6: 1362646, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38638447

RESUMO

Introduction: The aim of this study was to examine the validity and reliability of the My Jump 2 app for the assessment of interlimb jump asymmetry in young female basketball players. Methods: Nine athletes (age 15 ± 0.9 years; weight 62.9 ± 5.8 kg; height 173.6 ± 6.1 cm) performed single-leg drop jumps (DJs) and both-leg drop jumps on a force plate (Kistler Quattro jump) and were simultaneously recorded on two smartphones using the My Jump 2 app. Jump height from flight time and contact time data were statistically analyzed to evaluate the validity of two different camera settings, drop jump performance, and interlimb jump asymmetry in basketball players. The testing was repeated after 1 week for test retest reliability. Results: High test-retest reliability [intraclass correlation coefficient (ICC) > 0.88] was observed in DJ height. High correlation between the force plate and the My Jump 2 app was observed in DJ height (r = 0.99) and DJ contact time (r = 0.98). For the interlimb jump height asymmetries, mean differences were 0.6 percentages for the My Jump 2 app and the force plate, respectively (p = 0.77). Inter-device reliability revealed almost perfect correlation for the DJ height (ICC = 0.99, r = 0.98). Conclusion: The My Jump 2 app is a valid and reliable tool to assess drop jump performance and interlimb asymmetry in young female basketball players.

2.
Materials (Basel) ; 16(15)2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37570113

RESUMO

Proper fixation techniques are crucial in orthopedic surgery for the treatment of various medical conditions. Fractures of the distal humerus can occur due to either high-energy trauma with skin rupture or low-energy trauma in osteoporotic bone. The recommended surgical approach for treating these extra-articular distal humerus fractures involves performing an open reduction and internal fixation procedure using plate implants. This surgical intervention plays a crucial role in enhancing patient recovery and minimizing soft tissue complications. Dynamic Compression Plates (DCPs) and Locking Compression Plates (LCPs) are commonly used for bone fixation, with LCP extra-articular distal humerus plates being the preferred choice for extra-articular fractures. These fixation systems have anatomically shaped designs that provide angular stability to the bone. However, depending on the shape and position of the bone fracture, additional plate bending may be required during surgery. This can pose challenges such as increased surgery time and the risk of incorrect plate shaping. To enhance the accuracy of plate placement, the study introduces the Method of Anatomical Features (MAF) in conjunction with the Characteristic Product Features methodology (CPF). The utilization of the MAF enables the development of a parametric model for the contact surface between the plate and the humerus. This model is created using specialized Referential Geometrical Entities (RGEs), Constitutive Geometrical Entities (CGEs), and Regions of Interest (ROI) that are specific to the human humerus bone. By utilizing this anatomically tailored contact surface model, the standard plate model can be customized (bent) to precisely conform to the distinct shape of the patient's humerus bone during the pre-operative planning phase. Alternatively, the newly designed model can be fabricated using a specific manufacturing technology. This approach aims to improve geometrical accuracy of plate fixation, thus optimizing surgical outcomes and patient recovery.

3.
Materials (Basel) ; 16(13)2023 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-37444886

RESUMO

This study investigates the impact of annealing time, temperature, and layer height on the tensile strength and dimensional change of three 3D printing materials (PLA, PETG, and carbon fiber-reinforced PETG). Samples with varying layer heights (0.1 mm, 0.2 mm, and 0.3 mm) were annealed at temperatures ranging from 60-100 °C for 30, 60, and 90 min. Tensile tests were conducted, and regression models were developed to analyze the effects of these parameters on tensile strength. The models exhibited high accuracy, with a maximum deviation of only 5% from measured validation values. The models showed that layer height has a significantly bigger influence on tensile strength than annealing time and temperature. Optimal combinations of parameters were identified for each material, with PLA performing best at 0.1 mm/60 min/90 °C and PETG and PETGCF achieving optimal tensile strength at 0.1 mm/90 min/60 °C. PETGCF demonstrated smallest dimensional change after annealing and had the best modulus of elasticity of all the materials. The study employed experimental testing and regression models to assess the results across multiple materials under consistent conditions, contributing valuable insights to the ongoing discussion on the influence of annealing in 3D-printed parts.

4.
Children (Basel) ; 11(1)2023 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-38255350

RESUMO

Proper posture, characterized by the appropriate alignment of the cervical, thoracic, and lumbar segments of the spine, enables these regions to maintain their normal curvature. Body composition is recognized as one of the factors that can influence overall postural alignment of the spine. The objective of this study was to determine the influence of the parameters of body composition on the prevalence of postural disorders in the sagittal plane. The cross-sectional study was conducted on 152 children of both genders (78 boys), at a mean age of 11 years ± 6 months. In order to evaluate postural disorders, the Formetric 4D System, a tool manufactured by Diers, Schlangenbad, Germany was used. Based on its output data, the following variables were obtained: hyperkyphosis, hyperlordosis, kypholordosis, flatback, and normal alignment of the body in the sagittal plane. The evaluation of body composition parameters was conducted using the InBody 770 device. To determine how body composition influences the postural status of the spinal column, a discriminant analysis was employed. The results showed that approximately 65.8% of children exhibit various types of postural disorders when assessing the alignment of the spine in the sagittal plane. The most prevalent disorder observed was hyperkyphosis, affecting 34.2% of the subjects, followed by kypholordosis at 16.4%. Moreover, the results demonstrated that body composition significantly influences body posture (p = 0.004). An increase in fat mass corresponds to a deviation from normal body posture, whereas an increase in the percentage of skeletal muscle mass and fat-free mass is associated with a reduction in postural abnormalities in the sagittal plane. Considering the results, it is clear that body composition parameters serve as more reliable predictors of the influence on body posture compared to simply calculating the body mass index. Furthermore, it can be concluded that there are consistent patterns of influence by specific body composition parameters, including fat mass, percentage of skeletal muscle, and fat-free mass, on body posture among children from various climates. These results underscore the significance of implementing strength exercises in children, particularly during periods of rapid growth and development, as a means of preventing and correcting postural disorders.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...