Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Med Chem ; 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38706365

RESUMO

Atherosclerotic cardiovascular disease (ASCVD) is an advanced chronic inflammatory disease and the leading cause of death worldwide. The pathological development of ASCVD begins with atherosclerosis, characterised by a pathological remodelling of the arterial wall, lipid accumulation and build-up of atheromatous plaque. As the disease advances, it narrows the vascular lumen and limits the blood, leading to ischaemic necrosis in coronary arteries. Exosomes are nano-sized lipid vesicles of different origins that can carry many bioactive molecules from their parental cells, thus playing an important role in intercellular communication. The roles of exosomes in atherosclerosis have recently been intensively studied, advancing our understanding of the underlying molecular mechanisms. In this review, we briefly introduce exosome biology and then focus on the roles of exosomes of different cellular origins in atherosclerosis development and progression, functional significance of their cargoes and physiological impact on recipient cells. Studies have demonstrated that exosomes originating from endothelial cells, vascular smooth muscle cells, macrophages, dendritic cells, platelets, stem cells, adipose tissue and other sources play an important role in the atherosclerosis development and progression by affecting cholesterol transport, inflammatory, apoptotic and other aspects of the recipient cells' metabolism. MicroRNAs are considered the most significant type of bioactive molecules transported by exosomes and involved in ASCVD development. Finally, we review the current achievements and limitations associated with the use of exosomes for the diagnosis and treatment of ASCVD.

2.
Front Biosci (Schol Ed) ; 16(1): 8, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38538342

RESUMO

Disruption of lipoprotein metabolism plays an important role in the development of several cardiovascular, inflammatory, and metabolic diseases. This review examines the importance of different types of lipoproteins and the role they play in the development of dyslipidemia in obesity. The causes and consequences associated with the disruption of lipid metabolism and its significance in the pathogenesis of obesity are considered. The relationship between such pathological processes, which occur alongside obesity as dyslipidemia and inflammation, is determined. In view of the current efficacy and toxicity limitations of currently approved drugs, natural compounds as potential therapeutic agents in the treatment of obesity are considered in the review. The complex mechanisms of lipid metabolism normalization in obesity found for these compounds can serve as one of the confirmations of their potential efficacy in treating obesity. Nanoparticles can serve as carriers for the considered drugs, which can improve their pharmacokinetic properties.


Assuntos
Sistema Cardiovascular , Dislipidemias , Humanos , Lipoproteínas/metabolismo , Lipoproteínas/uso terapêutico , Obesidade/tratamento farmacológico , Obesidade/complicações , Dislipidemias/tratamento farmacológico , Dislipidemias/metabolismo , Sistema Cardiovascular/metabolismo , Sistema Cardiovascular/patologia , Inflamação/tratamento farmacológico
3.
Curr Med Chem ; 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38529605

RESUMO

ATP-binding cassette transporter A1 (ABCA1) is one of the key proteins regulating cholesterol homeostasis and playing a crucial role in atherosclerosis development. ABCA1 regulates the rate-limiting step of reverse cholesterol transport, facilitates the efflux of surplus intracellular cholesterol and phospholipids, and suppresses inflammation through several signalling pathways. At the same time, many mutations and Single Nucleotide Polymorphisms (SNPs) have been identified in the ABCA1 gene, which affects its biological function and is associated with several hereditary diseases (such as familial hypo-alpha-lipoproteinaemia and Tangier disease) and increased risk of cardiovascular diseases (CVDs). This review summarises recently identified mutations and SNPs in their connection to atherosclerosis and associated CVDs. Also, we discuss the recently described application of various plant-derived compounds to modulate ABCA1 expression in different in vitro and in vivo models. Herein, we present a comprehensive overview of the association of ABCA1 mutations and SNPs with CVDs and as a pharmacological target for different natural-derived compounds and highlight the potential application of these phytochemicals for treating atherosclerosis through modulation of ABCA1 expression.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...