Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Geophys Res Atmos ; 127(1): 1-19, 2022 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38511152

RESUMO

This work serves as the second of a two-part study to improve surface PM2.5 forecasts in the continental U.S. through the integrated use of multi-satellite aerosol optical depth (AOD) products (MODIS Terra/Aqua and VIIRS DT/DB), multi chemical transport model (CTM) (GEOS-Chem, WRF-Chem and CMAQ) outputs and ground observations. In part I of the study, a multi-model ensemble Kalman filter (KF) technique using three CTM outputs and ground observations was developed to correct forecast bias and generate a single best forecast of PM2.5 for next day over non-rural areas that have surface PM2.5 measurements in the proximity of 125 km. Here, with AOD data, we extended the bias correction into rural areas where the closest air quality monitoring station is at least 125 - 300 km away. First, we ensembled all of satellite AOD products to yield the single best AOD. Second, we corrected daily PM2.5 in rural areas from multiple models through the AOD spatial pattern between these areas and non-rural areas, referred to as "extended ground truth" or EGT, for today. Lastly, we applied the KF technique to update the bias in the forecast for next day using the EGT. Our results find that the ensemble of bias-corrected daily PM2.5 from three models for both today and next day show the best performance. Together, the two-part study develops a multi-model and multi-AOD bias correction technique that has the potential to improve PM2.5 forecasts in both rural and non-rural areas in near real time, and be readily implemented at state levels.

2.
J Geophys Res Atmos ; 125(14)2020 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-33425635

RESUMO

This work is the first of a two-part study that aims to develop a computationally efficient bias correction framework to improve surface PM2.5 forecasts in the United States. Here, an ensemble-based Kalman filter (KF) technique is developed primarily for nonrural areas with approximately 500 surface observation sites for PM2.5 and applied to three (GEOS-Chem, WRF-Chem, and WRF-CMAQ) chemical transport model (CTM) hindcast outputs for June 2012. While all CTMs underestimate daily surface PM2.5 mass concentration by 20-50%, KF correction is effective for improving each CTM forecast. Subsequently, two ensemble methods are formulated: (1) the arithmetic mean ensemble (AME) that equally weights each model and (2) the optimized ensemble (OPE) that calculates the individual model weights by minimizing the least-square errors. While the OPE shows superior performance than the AME, the combination of either the AME or the OPE with a KF performs better than the OPE alone, indicating the effectiveness of the KF technique. Overall, the combination of a KF with the OPE shows the best results. Lastly, the Successive Correction Method (SCM) was applied to spread the bias correction from model grids with surface PM2.5 observations to the grids lacking ground observations by using a radius of influence of 125 km derived from surface observations, which further improves the forecast of surface PM2.5 at the national scale. Our findings provide the foundation for the second part of this study that uses satellite-based aerosol optical depth (AOD) products to further improve the forecast of surface PM2.5 in rural areas by performing statistical analysis of model output.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...