Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(7)2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-37050500

RESUMO

Chemically pure plastic granulate is used as the starting material in the production of plastic parts. Extrusion machines rely on purity, otherwise resources are lost, and waste is produced. To avoid losses, the machines need to analyze the raw material. Spectroscopy in the visible and near-infrared range and machine learning can be used as analyzers. We present an approach using two spectrometers with a spectral range of 400-1700 nm and a fusion model comprising classification, regression, and validation to detect 25 materials and proportions of their binary mixtures. one dimensional convolutional neural network is used for classification and partial least squares regression for the estimation of proportions. The classification is validated by reconstructing the sample spectrum using the component spectra in linear least squares fitting. To save time and effort, the fusion model is trained on semi-empirical spectral data. The component spectra are acquired empirically and the binary mixture spectra are computed as linear combinations. The fusion model achieves very a high accuracy on visible and near-infrared spectral data. Even in a smaller spectral range from 400-1100 nm, the accuracy is high. The visible and near-infrared spectroscopy and the presented fusion model can be used as a concept for building an analyzer. Inexpensive silicon sensor-based spectrometers can be used.

2.
Sensors (Basel) ; 23(6)2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36991862

RESUMO

Spectrometers measure diffuse reflectance and create a "molecular fingerprint" of the material under investigation. Ruggedized, small scale devices for "in-field" use cases exist. Such devices might for example be used by companies in the food supply chain for inward inspection of goods. However, their application for the industrial Internet of Things workflows or scientific research is limited due to their proprietary nature. We propose an open platform for visible and near-infrared technology (OpenVNT), an open platform for capturing, transmitting, and analysing spectral measurements. It is built for use in the field, as it is battery-powered and transmits data wireless. To achieve high accuracy, the OpenVNT instrument contains two spectrometers covering a wavelength range of 400-1700 nm. We conducted a study on white grapes to compare the performance of the OpenVNT instrument against the Felix Instruments F750, an established commercial instrument. Using a refractometer as ground truth, we built and validated models to estimate the Brix value. As a quality measure, we used coefficient of determination of the cross-validation (R2CV) between the instrument estimation and ground truth. With 0.94 for the OpenVNT and 0.97 for the F750, a comparable R2CV was achieved for both instruments. OpenVNT matches the performance of commercially available instruments at one tenth of the price. We provide an open bill of materials, building instructions, firmware, and analysis software to enable research and industrial IOT solutions without the limitations of walled garden platforms.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...