Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 9(1): 1564, 2018 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-29674695

RESUMO

Energy-transport effects can alter the structure that develops as a supernova evolves into a supernova remnant. The Rayleigh-Taylor instability is thought to produce structure at the interface between the stellar ejecta and the circumstellar matter, based on simple models and hydrodynamic simulations. Here we report experimental results from the National Ignition Facility to explore how large energy fluxes, which are present in supernovae, affect this structure. We observed a reduction in Rayleigh-Taylor growth. In analyzing the comparison with supernova SN1993J, a Type II supernova, we found that the energy fluxes produced by heat conduction appear to be larger than the radiative energy fluxes, and large enough to have dramatic consequences. No reported astrophysical simulations have included radiation and heat conduction self-consistently in modeling supernova remnants and these dynamics should be noted in the understanding of young supernova remnants.

2.
Phys Rev Lett ; 92(1): 011103, 2004 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-14753979

RESUMO

Assuming that the neutrino luminosity from the neutron star core is sufficiently high to drive supernova explosions by the neutrino-heating mechanism, we show that low-mode (l=1,2) convection can develop from random seed perturbations behind the shock. A slow onset of the explosion is crucial, requiring the core luminosity to vary slowly with time, in contrast to the burstlike exponential decay assumed in previous work. Gravitational and hydrodynamic forces by the globally asymmetric supernova ejecta were found to accelerate the remnant neutron star on a time scale of more than a second to velocities above 500 km s(-1), in agreement with observed pulsar proper motions.

3.
Astrophys J ; 531(2): L123-L126, 2000 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-10688768

RESUMO

High-resolution two-dimensional simulations were performed for the first 5 minutes of the evolution of a core-collapse supernova explosion in a 15 M middle dot in circle blue supergiant progenitor. The computations start shortly after bounce and include neutrino-matter interactions by using a lightbulb approximation for the neutrinos and a treatment of the nucleosynthesis due to explosive silicon and oxygen burning. We find that newly formed iron-group elements are distributed throughout the inner half of the helium core by Rayleigh-Taylor instabilities at the (Ni + Si)/O and (C + O)/He interfaces, seeded by convective overturn during the early stages of the explosion. Fast-moving nickel mushrooms with velocities up to approximately 4000 km s-1 are observed. This offers a natural explanation for the mixing required in light-curve and spectral synthesis studies of Type Ib explosions. A continuation of the calculations to later times, however, indicates that the iron velocities observed in SN 1987A cannot be reproduced because of a strong deceleration of the clumps in the dense shell left behind by the shock at the He/H interface.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...