Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
FASEB J ; 38(11): e23710, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38822676

RESUMO

Steroidogenic tissues contain cytosolic lipid droplets that are important for steroidogenesis. Perilipin 2 (PLIN2), a structural coat protein located on the surface of lipid droplets in mammalian cells, plays a crucial role in regulating lipid droplet formation and contributing to various cellular processes such as lipid storage and energy homeostasis. Herein, we examine the role that PLIN2 plays in regulating progesterone synthesis in the bovine corpus luteum. Utilizing gene array databases and Western blotting, we have delineated the expression pattern of PLIN2 throughout the follicular to luteal transition. Our findings reveal the presence of PLIN2 in both ovarian follicular and steroidogenic luteal cells, demonstrating an increase in its levels as follicular cells transition into the luteal phase. Moreover, the depletion of PLIN2 via siRNA enhanced progesterone production in small luteal cells, whereas adenovirus-mediated overexpression of both PLIN2 and Perilipin 3 (PLIN3) induced an increase in cytosolic lipid droplet accumulation and decreased hormone-induced progesterone synthesis in these cells. Lastly, in vivo administration of the luteolytic hormone prostaglandin F2α resulted in an upregulation of PLIN2 mRNA and protein expression, accompanied by a decline in serum progesterone. Our findings highlight the pivotal role of PLIN2 in regulating progesterone synthesis in the bovine corpus luteum, as supported by its dynamic expression pattern during the follicular to luteal transition and its responsiveness to luteotropic and luteolytic hormones. We suggest PLIN2 as a potential therapeutic target for modulating luteal function.


Assuntos
Células Lúteas , Perilipina-2 , Progesterona , Animais , Feminino , Bovinos , Progesterona/metabolismo , Perilipina-2/metabolismo , Perilipina-2/genética , Células Lúteas/metabolismo , Gotículas Lipídicas/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Perilipina-3/metabolismo , Corpo Lúteo/metabolismo , Células Cultivadas
2.
Biol Reprod ; 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38869890

RESUMO

Conceptus-derived interferon-tau (IFNT) initiates maternal recognition of pregnancy in ewes by paracrine actions on the endometrium and endocrine action on the corpus luteum (CL). To examine the effect of IFNT on the CL without inducing IFN stimulated genes (ISGs) in the endometrium, recombinant ovine IFNT (roIFNT) or bovine serum albumin (BSA) was delivered directly into CLs via osmotic pumps at a rate of 10, 50 or 100 ng/h from days 9 to 12 of the estrous cycle. Endometrial and CL samples were collected on day 12. Fifty ng/h of roIFNT induced ISG15 in the CL on day 12 without affecting endometrial ISG15 concentrations. In a second experiment, roIFNT (50 ng/h) was infused into the CL from days 10 to 17 of the estrous cycle and serum samples were collected daily. Serum progesterone concentrations were significantly higher on days 15 to 17 in roIFNT-infused ewes compared to controls. Levels of LHCGR, STAR, CYP11A1, HSL, OPA1 and PKA mRNA and proteins were higher in the roIFNT-infused CLs compared to the controls. Levels of ISG15 and MX1 mRNA increased in the CLs of roIFNT-infused ewes but not in the endometrium. Endometrial ESR1 mRNA and protein concentrations were higher in the controls compared to roIFNT-infused ewes. In conclusion, intra-luteal delivery of roIFNT induced ISGs, stabilized steroidogenesis in the CL and delayed luteolysis without inducing endometrial ISGs. Inhibition of ESR1 in the endometrium of roIFNT-infused ewes was observed suggesting that direct delivery of IFNT to the CL has an additional anti-luteolytic effect on the endometrium.

3.
Environ Pollut ; 338: 122698, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37832777

RESUMO

Perfluorooctanoic acid (PFOA) is a persistent environmental contaminant. Due to the ubiquitous presence of PFOA in the environment, the impacts of PFOA exposure not only affect human reproductive health but may also affect livestock reproductive health. The focus of this study was to determine the effects of PFOA on the physiological functions of bovine granulosa cells in vitro. Primary bovine granulosa cells were exposed to 0, 4, and 40 µM PFOA for 48 and 96 h followed by analysis of granulosa cell function including cell viability, steroidogenesis, and mitochondrial activity. Results revealed that PFOA inhibited steroid hormone secretion and altered the expression of key enzymes required for steroidogenesis. Gene expression analysis revealed decreases in mRNA transcripts for CYP11A1, HSD3B, and CYP19A1 and an increase in STAR expression after PFOA exposure. Similarly, PFOA decreased levels of CYP11A1 and CYP19A1 protein. PFOA did not impact live cell number, alter the cell cycle, or induce apoptosis, although it reduced metabolic activity, indicative of mitochondrial dysfunction. We observed that PFOA treatment caused a loss of mitochondrial membrane potential and increases in PINK protein expression, suggestive of mitophagy and mitochondrial damage. Further analysis revealed that these changes were associated with increased levels of reactive oxygen species. Expression of autophagy related proteins phosphoULK1 and LAMP2 were increased after PFOA exposure, in addition to an increased abundance of lysosomes, characteristic of increased autophagy. Taken together, these findings suggest that PFOA can negatively impact granulosa cell steroidogenesis via mitochondrial dysfunction.


Assuntos
Caprilatos , Enzima de Clivagem da Cadeia Lateral do Colesterol , Feminino , Humanos , Animais , Bovinos , Enzima de Clivagem da Cadeia Lateral do Colesterol/genética , Enzima de Clivagem da Cadeia Lateral do Colesterol/metabolismo , Caprilatos/toxicidade , Caprilatos/metabolismo , Células da Granulosa , Mitocôndrias
4.
Endocrinology ; 164(9)2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37586092

RESUMO

Progesterone is an essential steroid hormone that is required to initiate and maintain pregnancy in mammals and serves as a metabolic intermediate in the synthesis of endogenously produced steroids, including sex hormones and corticosteroids. Steroidogenic luteal cells of the corpus luteum have the tremendous capacity to synthesize progesterone. These specialized cells are highly enriched with lipid droplets that store lipid substrate, which can be used for the synthesis of steroids. We recently reported that hormone-stimulated progesterone synthesis by luteal cells requires protein kinase A-dependent mobilization of cholesterol substrate from lipid droplets to mitochondria. We hypothesize that luteal lipid droplets are enriched with steroidogenic enzymes and facilitate the synthesis of steroids in the corpus luteum. In the present study, we analyzed the lipid droplet proteome, conducted the first proteomic analysis of lipid droplets under acute cyclic adenosine monophosphate (cAMP)-stimulated conditions, and determined how specific lipid droplet proteins affect steroidogenesis. Steroidogenic enzymes, cytochrome P450 family 11 subfamily A member 1 and 3 beta-hydroxysteroid dehydrogenase (HSD3B), were highly abundant on lipid droplets of the bovine corpus luteum. High-resolution confocal microscopy confirmed the presence of active HSD3B on the surface of luteal lipid droplets. We report that luteal lipid droplets have the capacity to synthesize progesterone from pregnenolone. Lastly, we analyzed the lipid droplet proteome following acute stimulation with cAMP analog, 8-Br-cAMP, and report increased association of HSD3B with luteal lipid droplets following stimulation. These findings provide novel insights into the role of luteal lipid droplets in steroid synthesis.


Assuntos
Gotículas Lipídicas , Progesterona , Gravidez , Feminino , Bovinos , Animais , Progesterona/metabolismo , Gotículas Lipídicas/metabolismo , Proteoma/metabolismo , Proteômica , Corpo Lúteo/metabolismo , Esteroides , Hormônios/metabolismo , Mamíferos/metabolismo
5.
Biol Reprod ; 109(3): 367-380, 2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37283496

RESUMO

Cyclic regression of the ovarian corpus luteum, the endocrine gland responsible for progesterone production, involves rapid matrix remodeling. Despite fibroblasts in other systems being known for producing and maintaining extracellular matrix, little is known about fibroblasts in the functional or regressing corpus luteum. Vast transcriptomic changes occur in the regressing corpus luteum, among which are reduced levels of vascular endothelial growth factor A (VEGFA) and increased expression of fibroblast growth factor 2 (FGF2) after 4 and 12 h of induced regression, when progesterone is declining and the microvasculature is destabilizing. We hypothesized that FGF2 activates luteal fibroblasts. Analysis of transcriptomic changes during induced luteal regression revealed elevations in markers of fibroblast activation and fibrosis, including fibroblast activation protein (FAP), serpin family E member 1 (SERPINE1), and secreted phosphoprotein 1 (SPP1). To test our hypothesis, we treated bovine luteal fibroblasts with FGF2 to measure downstream signaling, type 1 collagen production, and proliferation. We observed rapid and robust phosphorylation of various signaling pathways involved in proliferation, such as ERK, AKT, and STAT1. From our longer-term treatments, we determined that FGF2 has a concentration-dependent collagen-inducing effect, and that FGF2 acts as a mitogen for luteal fibroblasts. FGF2-induced proliferation was greatly blunted by inhibition of AKT or STAT1 signaling. Our results suggest that luteal fibroblasts are responsive to factors that are released by the regressing bovine corpus luteum, an insight into the contribution of fibroblasts to the microenvironment in the regressing corpus luteum.


Assuntos
Fator 2 de Crescimento de Fibroblastos , Progesterona , Animais , Bovinos , Feminino , Proliferação de Células , Colágeno/metabolismo , Corpo Lúteo/metabolismo , Dinoprosta/metabolismo , Fator 2 de Crescimento de Fibroblastos/metabolismo , Fibroblastos/metabolismo , Luteólise , Progesterona/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
6.
Life Sci Alliance ; 6(7)2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37188480

RESUMO

Prostaglandins are arachidonic acid-derived lipid mediators involved in numerous physiological and pathological processes. PGF2α analogues are therapeutically used for regulating mammalian reproductive cycles and blood pressure, inducing term labor, and treating ocular disorders. PGF2α exerts effects via activation of calcium and PKC signaling, however, little is known about the cellular events imposed by PGF2α signaling. Here, we explored the early effects of PGF2α on mitochondrial dynamics and mitophagy in the bovine corpus luteum employing relevant and well characterized in vivo and in vitro approaches. We identified PKC/ERK and AMPK as critical protein kinases essential for activation of mitochondrial fission proteins, DRP1 and MFF. Furthermore, we report that PGF2α elicits increased intracellular reactive oxygen species and promotes receptor-mediated activation of PINK-Parkin mitophagy. These findings place the mitochondrium as a novel target in response to luteolytic mediator, PGF2α. Understanding intracellular processes occurring during early luteolysis may serve as a target for improving fertility.


Assuntos
Dinoprosta , Dinâmica Mitocondrial , Feminino , Bovinos , Animais , Dinoprosta/farmacologia , Dinoprosta/metabolismo , Mitofagia , Corpo Lúteo/metabolismo , Transdução de Sinais , Mamíferos/metabolismo
7.
Endocr Rev ; 43(6): 1074-1096, 2022 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-35596657

RESUMO

Emerging studies indicate that the Hippo pathway, a highly conserved pathway that regulates organ size control, plays an important role in governing ovarian physiology, fertility, and pathology. Specific to the ovary, the spatiotemporal expression of the major components of the Hippo signaling cascade are observed throughout the reproductive lifespan. Observations from multiple species begin to elucidate the functional diversity and molecular mechanisms of Hippo signaling in the ovary in addition to the identification of interactions with other signaling pathways and responses to various external stimuli. Hippo pathway components play important roles in follicle growth and activation, as well as steroidogenesis, by regulating several key biological processes through mechanisms of cell proliferation, migration, differentiation, and cell fate determination. Given the importance of these processes, dysregulation of the Hippo pathway contributes to loss of follicular homeostasis and reproductive disorders such as polycystic ovary syndrome (PCOS), premature ovarian insufficiency, and ovarian cancers. This review highlights what is currently known about the Hippo pathway core components in ovarian physiology, including ovarian development, follicle development, and oocyte maturation, while identifying areas for future research to better understand Hippo signaling as a multifunctional pathway in reproductive health and biology.


Assuntos
Via de Sinalização Hippo , Insuficiência Ovariana Primária , Feminino , Humanos , Folículo Ovariano/fisiologia , Fertilidade
8.
Front Cell Dev Biol ; 9: 723563, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34820368

RESUMO

In the absence of pregnancy the ovarian corpus luteum undergoes regression, a process characterized by decreased production of progesterone and structural luteolysis involving apoptosis. Autophagy has been observed in the corpus luteum during luteal regression. Autophagy is a self-degradative process important for balancing sources of cellular energy at critical times in development and in response to nutrient stress, but it can also lead to apoptosis. Mechanistic target of rapamycin (MTOR) and 5' AMP-activated protein kinase (AMPK), key players in autophagy, are known to inhibit or activate autophagy, respectively. Here, we analyzed the signaling pathways regulating the initiation of autophagy in bovine luteal cells. In vivo studies showed increased activating phosphorylation of AMPKα (Thr172) and elevated content of LC3B, a known marker of autophagy, in luteal tissue during PGF2α-induced luteolysis. In vitro, AMPK activators 1) stimulated phosphorylation of regulatory associated protein of MTOR (RPTOR) leading to decreased activity of MTOR, 2) increased phosphorylation of Unc-51-Like Kinase 1 (ULK1) and Beclin 1 (BECN1), at sites specific for AMPK and required for autophagy initiation, 3) increased levels of LC3B, and 4) enhanced colocalization of autophagosomes with lysosomes indicating elevated autophagy. In contrast, LH/PKA signaling in luteal cells 1) reduced activation of AMPKα and phosphorylation of RPTOR, 2) elevated MTOR activity, 3) stimulated phosphorylation of ULK1 at site required for ULK1 inactivation, and 4) inhibited autophagosome formation as reflected by reduced content of LC3B-II. Pretreatment with AICAR, a pharmacological activator of AMPK, inhibited LH-mediated effects on RPTOR, ULK1 and BECN1. Our results indicate that luteotrophic signaling via LH/PKA/MTOR inhibits, while luteolytic signaling via PGF2α/Ca2+/AMPK activates key signaling pathways involved in luteal cell autophagy.

9.
Int J Mol Sci ; 22(18)2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34576135

RESUMO

The corpus luteum is an endocrine gland that synthesizes the steroid hormone progesterone. luteinizing hormone (LH) is a key luteotropic hormone that stimulates ovulation, luteal development, progesterone biosynthesis, and maintenance of the corpus luteum. Luteotropic and luteolytic factors precisely regulate luteal structure and function; yet, despite recent scientific progress within the past few years, the exact mechanisms remain largely unknown. In the present review, we summarize the recent progress towards understanding cellular changes induced by LH in steroidogenic luteal cells. Herein, we will focus on the effects of LH on inter-organelle communication and steroid biosynthesis, and how LH regulates key protein kinases (i.e., AMPK and MTOR) responsible for controlling steroidogenesis and autophagy in luteal cells.


Assuntos
Corpo Lúteo/metabolismo , Hormônio Luteinizante/metabolismo , Organelas/metabolismo , Animais , Autofagia , Corpo Lúteo/citologia , Feminino , Humanos , Células Lúteas/citologia , Células Lúteas/ultraestrutura , Transdução de Sinais
10.
Endocrinology ; 162(4)2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33502468

RESUMO

Luteinizing hormone (LH) via protein kinase A (PKA) triggers ovulation and formation of the corpus luteum, which arises from the differentiation of follicular granulosa and theca cells into large and small luteal cells, respectively. The small and large luteal cells produce progesterone, a steroid hormone required for establishment and maintenance of pregnancy. We recently reported on the importance of hormone-sensitive lipase (HSL, also known as LIPE) and lipid droplets for appropriate secretory function of the corpus luteum. These lipid-rich intracellular organelles store cholesteryl esters, which can be hydrolyzed by HSL to provide cholesterol, the main substrate necessary for progesterone synthesis. In the present study, we analyzed dynamic posttranslational modifications of HSL mediated by PKA and AMP-activated protein kinase (AMPK) as well as their effects on steroidogenesis in luteal cells. Our results revealed that AMPK acutely inhibits the stimulatory effects of LH/PKA on progesterone production without reducing levels of STAR, CYP11A1, and HSD3B proteins. Exogenous cholesterol reversed the negative effects of AMPK on LH-stimulated steroidogenesis, suggesting that AMPK regulates cholesterol availability in luteal cells. AMPK evoked inhibitory phosphorylation of HSL (Ser565). In contrast, LH/PKA decreased phosphorylation of AMPK at Thr172, a residue required for its activation. Additionally, LH/PKA increased phosphorylation of HSL at Ser563, which is crucial for enzyme activation, and decreased inhibitory phosphorylation of HSL at Ser565. The findings indicate that LH and AMPK exert opposite posttranslational modifications of HSL, presumptively regulating cholesterol availability for steroidogenesis.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Células Lúteas/citologia , Células Lúteas/enzimologia , Progesterona/metabolismo , Proteínas Quinases Ativadas por AMP/química , Proteínas Quinases Ativadas por AMP/genética , Motivos de Aminoácidos , Animais , Bovinos , Colesterol/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/genética , Ativação Enzimática , Feminino , Células Lúteas/metabolismo , Hormônio Luteinizante/metabolismo , Fosforilação , Transdução de Sinais
11.
Sci Rep ; 10(1): 11287, 2020 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-32647143

RESUMO

Establishment and maintenance of pregnancy depends on progesterone synthesized by luteal tissue in the ovary. Our objective was to identify the characteristics of lipid droplets (LDs) in ovarian steroidogenic cells. We hypothesized that LDs are a major feature of steroidogenic luteal cells and store cholesteryl esters. Whole bovine tissues, isolated ovarian steroidogenic cells (granulosa, theca, small luteal, and large luteal), and isolated luteal LDs were assessed for LD content, LD-associated proteins and lipid analyses. Bovine luteal tissue contained abundant lipid droplets, LD-associated perilipins 2/3/5, hormone-sensitive lipase, and 1-acylglycerol-3-phosphate O-acyltransferase ABHD5. Luteal tissue was enriched in triglycerides (TGs) compared to other tissues, except for adipose tissue. Luteal cells were distinguishable from follicular cells by the presence of LDs, LD-associated proteins, and increased TGs. Furthermore, LDs from large luteal cells were numerous and small; whereas, LDs from small luteal cells were large and less numerous. Isolated LDs contained nearly all of the TGs and cholesteryl esters present in luteal tissue. Isolated luteal LDs were composed primarily of TG, with lesser amounts of cholesteryl esters, diglyceride and other phospholipids. Bovine luteal LDs are distinct from LDs in other bovine tissues, including follicular steroidogenic cells.


Assuntos
Corpo Lúteo/metabolismo , Gotículas Lipídicas/química , Lipídeos/química , Ovário/metabolismo , 1-Acilglicerol-3-Fosfato O-Aciltransferase/química , Animais , Bovinos , Ésteres do Colesterol/metabolismo , Feminino , Células da Granulosa/metabolismo , Lipidômica , Células Lúteas/metabolismo , Microscopia Confocal , Ovulação , Perilipina-1/química , Progesterona/metabolismo , Espectrometria de Massas em Tandem , Células Tecais/metabolismo
12.
FASEB J ; 34(8): 10731-10750, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32614098

RESUMO

The corpus luteum is a transient endocrine gland that synthesizes and secretes the steroid hormone, progesterone, which is vital for establishment and maintenance of pregnancy. Luteinizing hormone (LH) via activation of protein kinase A (PKA) acutely stimulates luteal progesterone synthesis via a complex process, converting cholesterol via a series of enzymatic reactions, into progesterone. Lipid droplets in steroidogenic luteal cells store cholesterol in the form of cholesterol esters, which are postulated to provide substrate for steroidogenesis. Early enzymatic studies showed that hormone sensitive lipase (HSL) hydrolyzes luteal cholesterol esters. In this study, we tested whether HSL is a critical mediator of the acute actions of LH on luteal progesterone production. Using LH-responsive bovine small luteal cells our results reveal that LH, forskolin, and 8-Br cAMP-induced PKA-dependent phosphorylation of HSL at Ser563 and Ser660, events known to promote HSL activity. Small molecule inhibition of HSL activity and siRNA-mediated knock down of HSL abrogated LH-induced progesterone production. Moreover, western blotting and confocal microscopy revealed that LH stimulates phosphorylation and translocation of HSL to lipid droplets. Furthermore, LH increased trafficking of cholesterol from the lipid droplets to the mitochondria, which was dependent on both PKA and HSL activation. Taken together, these findings identify a PKA/HSL signaling pathway in luteal cells in response to LH and demonstrate the dynamic relationship between PKA, HSL, and lipid droplets in luteal progesterone synthesis.


Assuntos
Transporte Biológico/fisiologia , Colesterol/metabolismo , Gotículas Lipídicas/metabolismo , Células Lúteas/metabolismo , Mitocôndrias/metabolismo , Animais , Bovinos , Colforsina/metabolismo , Corpo Lúteo/metabolismo , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Feminino , Hormônio Luteinizante/metabolismo , Fosforilação/fisiologia , Gravidez , Progesterona/metabolismo , Transdução de Sinais/fisiologia
13.
Mol Cell Endocrinol ; 514: 110911, 2020 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-32553947

RESUMO

Previous studies have reported hypo-glycosylated FSH and fully-glycosylated FSH to be naturally occurring in humans, and these glycoforms exist in changing ratios over a woman's lifespan. The precise cellular and molecular effects of recombinant human FSH (hFSH) glycoforms, FSH21 and FSH24, have not been documented in primary granulosa cells. Herein, biological responses to FSH21 and FSH24 were compared in primary porcine granulosa cells. Hypo-glycosylated hFSH21 was significantly more effective than fully-glycosylated hFSH24 at stimulating cAMP accumulation and protein kinase A (PKA) activity, leading to the higher phosphorylation of CREB and ß-Catenin. Compared to fully-glycosylated hFSH24, hypo-glycosylated hFSH21 also induced greater levels of transcripts for HSD3B, STAR and INHA, and higher progesterone production. Our results demonstrate that hypo-glycosylated hFSH21 exerts more robust activation of intracellular signals associated with steroidogenesis than fully-glycosylated hFSH24 in primary porcine granulosa cells, and furthers our understanding of the differing bioactivities of FSH glycoforms in the ovary.


Assuntos
Hormônio Foliculoestimulante Humano/farmacologia , Células da Granulosa/efeitos dos fármacos , Animais , Células Cultivadas , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Feminino , Hormônio Foliculoestimulante Humano/química , Hormônio Foliculoestimulante Humano/metabolismo , Glicosilação , Células da Granulosa/citologia , Células da Granulosa/fisiologia , Ovário/efeitos dos fármacos , Ovário/metabolismo , Cultura Primária de Células/veterinária , Progesterona/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacologia , Transdução de Sinais/efeitos dos fármacos , Suínos , beta Catenina/metabolismo
14.
FASEB J ; 34(4): 5299-5316, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32077149

RESUMO

The corpus luteum is an endocrine gland that synthesizes and secretes progesterone. Luteinizing hormone (LH) activates protein kinase A (PKA) signaling in luteal cells, increasing delivery of substrate to mitochondria for progesterone production. Mitochondria maintain a highly regulated equilibrium between fusion and fission in order to sustain biological function. Dynamin-related protein 1 (DRP1), is a key mediator of mitochondrial fission. The mechanism by which DRP1 is regulated in the ovary is largely unknown. We hypothesize that LH via PKA differentially regulates the phosphorylation of DRP1 on Ser616 and Ser637 in bovine luteal cells. In primary cultures of steroidogenic small luteal cells (SLCs), LH, and forskolin stimulated phosphorylation of DRP1 (Ser 637), and inhibited phosphorylation of DRP1 (Ser 616). Overexpression of a PKA inhibitor blocked the effects of LH and forskolin on DRP1 phosphorylation. In addition, LH decreased the association of DRP1 with the mitochondria. Genetic knockdown of the DRP1 mitochondria receptor, and a small molecule inhibitor of DRP1 increased basal and LH-induced progesterone production. Studies with a general Dynamin inhibitor and siRNA knockdown of DRP1 showed that DRP1 is required for optimal LH-induced progesterone biosynthesis. Taken together, the findings place DRP1 as an important target downstream of PKA in steroidogenic luteal cells.


Assuntos
Corpo Lúteo/metabolismo , Dinaminas/metabolismo , Hormônio Luteinizante/farmacologia , Dinâmica Mitocondrial , Progesterona/biossíntese , Animais , Bovinos , Corpo Lúteo/efeitos dos fármacos , AMP Cíclico/metabolismo , Dinaminas/genética , Feminino , Fosforilação , Transdução de Sinais
15.
Biol Reprod ; 101(5): 1001-1017, 2019 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-31350850

RESUMO

Yes-associated protein 1 (YAP1) is a major component of the Hippo signaling pathway. Although the exact extracellular signals that control the Hippo pathway are currently unknown, increasing evidence supports a critical role for the Hippo pathway in embryonic development, regulation of organ size, and carcinogenesis. Granulosa cells (GCs) within the ovarian follicle proliferate and produce steroids and growth factors, which facilitate the growth of follicle and maturation of the oocyte. We hypothesize that YAP1 plays a role in proliferation and estrogen secretion of GCs. In the current study, we examined the expression of the Hippo signaling pathway in bovine ovaries and determined whether it was important for GC proliferation and estrogen production. Mammalian STE20-like protein kinase 1 (MST1) and large tumor suppressor kinase 2 (LATS2) were identified as prominent upstream components of the Hippo pathway expressed in granulosa and theca cells of the follicle and large and small cells of the corpus luteum. Immunohistochemistry revealed that YAP1 was localized to the nucleus of growing follicles. In vitro, nuclear localization of the downstream Hippo signaling effector proteins YAP1 and transcriptional co-activator with PDZ-binding motif (TAZ) was inversely correlated with GC density, with greater nuclear localization under conditions of low cell density. Treatment with verteporfin and siRNA targeting YAP1 or TAZ revealed a critical role for these transcriptional co-activators in GC proliferation. Furthermore, knockdown of YAP1 in GCs inhibited follicle-stimulating hormone (FSH)-induced estradiol biosynthesis. The data indicate that Hippo pathway transcription co-activators YAP1/TAZ play an important role in GC proliferation and estradiol synthesis, two processes necessary for maintaining normal follicle development.


Assuntos
Proliferação de Células/fisiologia , Fatores de Transcrição/metabolismo , Animais , Bovinos , Células Cultivadas , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/fisiologia , Técnicas de Silenciamento de Genes , Células da Granulosa/metabolismo , Fármacos Fotossensibilizantes/farmacologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/genética , Verteporfina/farmacologia
16.
PLoS One ; 13(11): e0207704, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30444930

RESUMO

INTRODUCTION: For immune cells transforming growth factor beta-1 (TGF-ß1) can enhance or repress effector functions. Here, we characterize the effects of TGF-ß1 on IgE-mediated and IL-33-mediated activation of primary murine mast cells derived from hematopoietic stem cells (bone marrow derived mast cells; BMMC). We also investigated potential interactions between TGF-ß1 and stem cell factor (SCF). We conclude TGF-ß1 plays a selectively stimulatory role for mast cell cultures in vitro. METHODS: BMMCs from C57BL/6 mice were differentiated with IL-3 and then treated with TGF-ß1. BMMCs were exposed to TGF-ß1, primed with IgE, activated with antigen, and then IL-6 and IL-13 cytokine release was quantified using ELISA. Additionally, the effects of TGF-ß1 on both IgE and IL-33-mediated short term activation were observed via flow cytometric analysis of both surface LAMP-1 expression and intracellular IL-6. Receptor colocalization was visualized using fluorescence confocal microscopy and individual receptor expression levels were also quantified. RESULTS: Resting IL-6 production increased with TGF-ß1 but significance was lost following BMMC activation via IgE receptor (FcεRI) crosslinking. This was similar to a comparison effect due to SCF treatment alone, which also enhanced resting levels of IL-6. TGF-ß1 treatment enhanced release of IL-13 only with FcεRI-IgE-mediated activation. TGF-ß1 suppressed mobilization of IL-6 with short-term BMMC activation when stimulated with IL-33. Lastly, colocalization patterns of the SCF receptor (CD117) and FcεRI with IgE crosslinking were unaffected by TGF-ß1 treatment, but individual expression levels for FcεRI, CD117, and TGFßRII were all reduced following either IgE activation or TGF-ß1 treatment; this reduction was partially recovered in BMMCs that were both activated by IgE and treated with TGF-ß1. DISCUSSION: These data reveal a novel positive effect of soluble TGF-ß1 on mast cell activation in vitro, suggesting mast cells may be activated through a non-canonical pathway by TGF-ß1. Understanding this interaction will provide insight into the potential role of mast cells in settings where TGF-ß1 is produced in an aberrant manner, such as in and around high grade tumors.


Assuntos
Imunoglobulina E/metabolismo , Interleucina-13/metabolismo , Interleucina-6/metabolismo , Mastócitos/citologia , Fator de Crescimento Transformador beta1/farmacologia , Animais , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Citometria de Fluxo , Interleucina-33/farmacologia , Proteínas de Membrana Lisossomal/metabolismo , Mastócitos/efeitos dos fármacos , Mastócitos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Confocal
17.
Biol Reprod ; 98(4): 543-557, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29324978

RESUMO

Progesterone is a steroid hormone secreted from the corpus luteum (CL), which is responsible for establishment and maintenance of pregnancy. Early embryonic mortality often occurs due to inadequate regulation of uterine prostaglandin (PG) F2α secretion, leading to a decrease in progesterone and loss of pregnancy. The objective of the current study was to determine the effects of fish meal supplementation on luteal sensitivity to intrauterine infusions of PGF2α. Nonlactating beef cows received corn gluten meal or fish meal supplementation for 60 days. Cows were administered four intrauterine infusions of 0.25 mL saline at 6-h intervals (n = 6 corn gluten meal; n = 5 fish meal) or two doses of 0.5 mg PGF2α in 0.25 mL saline at 12-h intervals (n = 11 corn gluten meal; n = 11 fish meal) commencing on days 10 to 12 of the estrous cycle. At time of each infusion, luteal biopsies were collected to determine the effects of supplementation on expression of immediate early and steroidogenic genes involved in cholesterol transport and progesterone biosynthesis. Transrectal ultrasonography was performed to measure diameter of CL, and blood samples were collected to determine serum progesterone. Intrauterine infusion of PGF2α resulted in upregulation or no change in FOS, NR4A1, and 3BHSD and downregulation in LDLR, STARD1, and CYP11A1. Although CL diameter decreased, infusion of PGF2α resulted in functional regression in 91% of cows supplemented with corn gluten meal, and only 46% for fish meal supplemented animals. Results demonstrate that fish meal supplementation alters luteal sensitivity to PGF2α, which may affect fertility.


Assuntos
Ração Animal , Corpo Lúteo/efeitos dos fármacos , Suplementos Nutricionais , Dinoprosta/farmacologia , Luteólise/efeitos dos fármacos , Útero/efeitos dos fármacos , Animais , Bovinos , Corpo Lúteo/diagnóstico por imagem , Feminino , Fertilidade/efeitos dos fármacos , Progesterona/sangue , Ultrassonografia , Útero/diagnóstico por imagem
18.
Biochim Biophys Acta Biomembr ; 1859(12): 2413-2419, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28912100

RESUMO

Fish oil is a rich source of omega-3 fatty acids which disrupt lipid microdomain structure and affect mobility of the prostaglandin F2α (FP) receptor in bovine luteal cells. The objectives of this study were to determine the effects of individual omega-3 fatty acids, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) on 1) membrane fatty acid composition, 2) lipid microdomain structure, and 3) lateral mobility of the FP receptor in bovine luteal cells. Ovaries were collected from a local abattoir (n=5/experiment). The corpus luteum was resected and enzymatically digested using collagenase to generate a mixed luteal cell population. In all experiments, luteal cells were treated with 0, 1, 10 or 100µM EPA or DHA for 72h to allow incorporation of fatty acids into membrane lipids. Results from experiment 1 show that culturing luteal cells in the presence of EPA or DHA increased these luteal fatty acids. In experiment 2, both EPA and DHA increased spatial distribution of lipid microdomains in a dose-dependent manner. Single particle tracking results from experiment 3 show that increasing both EPA and DHA concentrations increased micro- and macro-diffusion coefficients, increased domain size, and decreased residence time of FP receptors. Collectively, results from this study demonstrate similar effects of EPA and DHA on lipid microdomain structure and lateral mobility of FP receptors in cultured bovine luteal cells. Moreover, only 10µM of either fatty acid was needed to mimic the effects of fish oil.


Assuntos
Ácidos Docosa-Hexaenoicos/farmacologia , Ácido Eicosapentaenoico/farmacologia , Células Lúteas/efeitos dos fármacos , Microdomínios da Membrana/efeitos dos fármacos , Receptores de Prostaglandina/metabolismo , Animais , Bovinos , Relação Dose-Resposta a Droga , Feminino , Células Lúteas/citologia , Células Lúteas/metabolismo , Lipídeos de Membrana/química , Lipídeos de Membrana/metabolismo , Microdomínios da Membrana/metabolismo , Microdomínios da Membrana/ultraestrutura , Cultura Primária de Células , Transporte Proteico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...