Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Food Prot ; : 100329, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39025262

RESUMO

Fresh produce is traditionally labeled with plastic price lookup (PLU) stickers that are attached to the produce surface using edible glue. However, both the stickers and glue are environmental contaminants, and the stickers can still easily detach from the produce surface during handling and disrupt traceability. An alternative method of labeling, the CO2 laser-labeling technology (LLT), has been gaining attention in recent years. However, engraving Quick Response (QR) code using LLT is unique, and the performance of this technology varies from produce item to produce item, and information on its effects on postharvest quality, microbial safety, and economic feasibility has not been reported. The objectives of this study were to investigate the effect of laser-labeling technology on 1) postharvest quality, 2) microbial safety, and 3) economic analysis of this technology. Three horticultural crops, 'Red Delicious' apple (Malus pumila), green bell pepper (Capsicum annuum), and cucumber (Cucumis sativus) were procured from a local grocery store. Each produce was engraved with a Quick Response (QR) code or 6-digit alphanumerical (text) code using the commercially available Trotec Speedy 300 CO2 laser engraver, followed by the application of edible wax. Fresh weight loss for laser-printed produce was higher compared to controls, but no difference in visual quality ratings was observed. The laser-labeled produce was assessed for microbial contamination by artificially inoculating rifampicin-resistant Escherichia coli (E. coli) log10 6 CFU/mL to the labeled fruit. The results showed that the population of rifampicin-resistant E. coli was statistically higher in all three products labeled with text code compared to the non-treated controls. The QR-coded treatments were similar to the controls. The wax application did not affect the microbial attachment on the laser-labeled produce. The CO2 laser labeling technology has the potential for industrial application.

2.
J Food Prot ; 86(7): 100103, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37172906

RESUMO

Cover crops are plants seeded before or after cash crops to improve soil health, reduce weed pressure, and prevent erosion. Cover crops also produce various antimicrobial secondary metabolites (i.e., glucosinolates, quercetin), yet the role of cover crops in moderating the population of human pathogens in the soil has rarely been investigated. This study aims to determine the antimicrobial capacity of three cover crop species to reduce the population of generic Escherichia coli (E. coli) in contaminated agricultural soil. Four-week-old mustard greens (Brassicajuncea), sunn hemp (Crotalaria juncea), and buckwheat (Fagopyrum esculentum) were mixed into autoclaved soil and inoculated with rifampicin-resistant generic E. coli to achieve a starting concentration of 5 log CFU/g. The surviving microbial populations on days 0, 4, 10, 15, 20, 30, and 40 were enumerated. All three cover crops significantly reduced the population of generic E. coli compared to the control (p < 0.0001), particularly between days 10 and to 30. Buckwheat resulted in the highest reduction (3.92 log CFU/g). An inhibitory effect (p < 0.0001) on microbial growth was also observed in soils containing mustard greens and sunn hemp. This study provides evidence for the bacteriostatic and bactericidal effect of particular cover crops. More research regarding the secondary metabolites produced by certain cover crops and their potential as a bio mitigation strategy to improve on-farm produce safety is warranted.


Assuntos
Produtos Agrícolas , Escherichia coli , Humanos , Solo , Fazendas , Microbiologia do Solo , Agricultura
3.
J Food Prot ; 86(3): 100056, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36916561

RESUMO

Ultraviolet-C (UV-C) irradiation is a well-recognized technology for improving blueberry postharvest quality, and previous literature indicates that it has the potential for dual-use as an antimicrobial intervention for this industry. However, the practicality and feasibility of deploying this technology in fresh blueberry fruit are significantly hindered by the shadowing effect occurring at the blossom-end scar of the fruit. The purpose of this study was to determine if treating the blueberry fruit within a chamber fitted with UV-Light Emitting Diodes (LEDs) emitting a peak UV-C at 275 nm could minimize this shadowing and result in improved treatment efficacy. Ten blueberry fruits were dip-inoculated with E. coli at a concentration of 105 CFU/mL and irradiated within the system at doses of 0, 1.617, 3.234, 9.702, and 16.17 mJ/cm2 (0, 30, 60, 180, and 300 s). Statistical analysis was performed to characterize the extent of microbial survival as well as the UV-C inactivation kinetics. A maximum of 0.91-0.95 log reduction was observed, which attenuated after 60 s of treatment. The microbial inactivation and survival were thus modeled using the Geeraerd-tail model in Microsoft Excel with the GInaFIt add-in (RMSE = 0.2862). Temperatures fluctuated between 23 ± 0.5°C and 39.5°C ± 0.5°C during treatment but did not statistically impact the treatment efficacy (P = 0.0823). The data indicate that the design of a UV-LED system may improve the antimicrobial efficacy of UV-C technology for the surface decontamination of irregularly shaped fruits, and that further optimization could facilitate its use in the industry.


Assuntos
Mirtilos Azuis (Planta) , Escherichia coli O157 , Frutas , Contagem de Colônia Microbiana , Viabilidade Microbiana/efeitos da radiação , Raios Ultravioleta
4.
Foods ; 10(11)2021 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-34828940

RESUMO

Leafy green production in high tunnels (HTs) results in increased yields, improved visual quality, and extended production with polyethylene (poly) film and/or shade cloth coverings. However, altering visible and ultra-violet light with HT coverings may reduce phytochemicals, thus influencing plant pigmentation and taste. The objective of this study was to examine various HT coverings on the sensory perceptions, soil temperature, color, and anthocyanin accumulation of red leaf lettuce. The coverings included standard poly, standard poly with removal two weeks prior to harvest (movable), diffuse poly, clear poly, UV-A/B blocking poly (block), standard poly with 55% shade cloth, and the open field. A highly trained descriptive panel evaluated the samples using a scale from 0 (none) to 15 (extremely high) and determined a list of 20 sensory attributes. The color intensity attribute had the most differentiation between coverings, and the open field was higher (i.e., darker) than the others at 7.5 (p < 0.0001), followed by clear and movable coverings at 6.8, and the shade covering scored a 2. Strong relationships existed between both colorimetric (hue°) and anthocyanin analysis to panelist-based scores (R2 = 0.847 and 0.640, respectively). The initial crispness was similar for movable, standard, diffuse, and block coverings at 5.3 on average, which was higher than the open field at 4 (p < 0.01). The open field lettuce grew under cooler soil temperatures, which may have slowed down maturation and resulted in softer tissue. Based on this study, HT growers can implement specific coverings to cater to markets that value visual quality.

5.
Antibiotics (Basel) ; 9(9)2020 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-32961923

RESUMO

Strawberries are a highly perishable crop with postharvest losses than reach up to 40%. Cost-effective and sustainable technologies in the form of active packing films can provide a solution. Antimicrobial packaging films were produced from pullulan polymer and Solid Lipid Nanoparticles (SLN) containing 1% w/w cinnamaldehyde. Strawberries were stored at 3 °C for 10 days and 12 °C for 6 days. Microbial and physical quality parameters were evaluated during storage. A reduction of approximately 2 Log CFU/g in yeast and mold population was observed for treated strawberries stored at 3 °C as compared to the control (p < 0.05). Yeast and molds counts were significantly lower on day 2 and 4 at 12 °C for treated samples. Strawberries packaged with the active films demonstrated lower respiration rates and the retention of bright red color at both storage temperatures. Active pullulan films were effective in maintaining the desired strawberry quality and reducing fungal decay during refrigerated storage.

6.
J Food Sci ; 84(8): 2261-2268, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31313301

RESUMO

The consumer demand for locally grown fresh produce is continuously increasing in the United States. The high tunnel systems have been successfully utilized by small acreage growers for local production. Consumers are typically assessing appearance, freshness, flavor and aroma when purchasing produce. A common perception is that locally grown produce tastes better than nonlocal. However, there is not much evidence for supporting this claim. The objective of this study was to identify consumer acceptability and the sensory characteristics/differences of locally grown spinach in open field or in high tunnel and nonlocal commercially grown spinach. Spinach, Spinacia oleracea cv. "Corvair" was grown in open field and in high tunnel at Kansas State Univ. Olathe Horticulture Research and Extension Center (OHREC) in spring 2017 and the commercially grown spinach was purchased at a local retail store. A consumer study (n = 205) was conducted at Kansas State Univ., Olathe campus, and a descriptive sensory analysis was conducted by a highly trained descriptive analysis panel in the Center for Sensory Analysis and Consumer Behavior at Kansas State Univ., Manhattan campus, in spring 2017. The consumer test showed that high tunnel spinach scored significantly higher in overall liking (P < 0.0001), flavor liking (P < 0.0001), and texture liking (P < 0.05) when compared to open field and store purchased spinach. Descriptive analysis showed that locally grown spinach had higher intensity of attributes that indicate premium quality, such as green color and green/spinach flavors. Our results indicate that locally grown spinach was preferred from the consumers for its high organoleptic quality. PRACTICAL APPLICATION: Locally grown spinach demonstrated high intensity in a set of sensory attributes that suggest a product with premium organoleptic quality. Correspondingly to these results, consumers liked spinach produced locally in high tunnels the most. The results of this study can be used for developing marketing strategies that are aiming specifically to the consumer niche that is seeking fresh produce of high organoleptic quality.


Assuntos
Comportamento do Consumidor , Spinacia oleracea/química , Cor , Aromatizantes/química , Aromatizantes/metabolismo , Preferências Alimentares , Humanos , Kansas , Odorantes/análise , Spinacia oleracea/crescimento & desenvolvimento , Spinacia oleracea/metabolismo , Paladar
7.
J Agric Food Chem ; 58(22): 11783-9, 2010 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-21047092

RESUMO

The influence of deficit irrigation (Deficit) and reflective mulch (Reflective) of Caldesi 2000 nectarines on the content of individual phenolic compounds was studied at harvest and during storage for 2, 4, and 6 weeks at 2 °C during two consecutive years (2007 and 2008). Individual phenolic groups in the edible fruit part consisted mainly of proanthocyanidins (200 mg/100 g fw), lower content of phenolic acids (17 mg/100 g fw), and minor content of flavonols (5 mg/100 g fw) and anthocyanins (1.2 mg/100 g fw). Deficit irrigation increased the content of total phenolics, including proanthocyanidins and phenolic acids, reaching similar amounts in both years. Sun-exposed fruit (upper part of canopy) showed higher content than shaded fruit (lower part of canopy). However, Reflective significantly increased the content of total phenolics, particularly phenolic acids and proanthocyanidins, of fruit located in the lower part of the canopy. During storage, Deficit and Reflective did not affect the content of phenolic acids, flavonols, and proanthocyanidins when compared to the content at harvest. Optimizing cultural practices can be a way to increase the phenolic content of nectarines.


Assuntos
Manipulação de Alimentos/métodos , Fenóis/análise , Extratos Vegetais/análise , Prunus/química , Irrigação Agrícola , Antocianinas/análise , Flavonóis/análise , Frutas , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...