Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Mol Biosci ; 10: 1335704, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38274095

RESUMO

Introduction: Helicobacter pylori is a bacterium that colonizes the gastric epithelium, which affects millions of people worldwide. H. pylori infection can lead to various gastrointestinal diseases, including gastric adenocarcinoma and mucosa-associated lymphoid tissue lymphoma. Conventional antibiotic therapies face challenges due to increasing antibiotic resistance and patient non-compliance, necessitating the exploration of alternative treatment approaches. In this study, we focused on Hp0231 (DsbK), an essential component of the H. pylori Dsb (disulfide bond) oxidative pathway, and investigated peptide-based inhibition as a potential therapeutic strategy. Methods: Three inhibitory peptides designed by computational modeling were evaluated for their effectiveness using a time-resolved fluorescence assay. We also examined the binding affinity between Hp0231 and the peptides using microscale thermophoresis. Results and discussion: Our findings demonstrate that in silico-designed synthetic peptides can effectively inhibit Hp0231-mediated peptide oxidation. Targeting Hp0231 oxidase activity could attenuate H. pylori virulence without compromising bacterial viability. Therefore, peptide-based inhibitors of Hp0231 could be candidates for the development of new targeted strategy, which does not influence the composition of the natural human microbiome, but deprive the bacterium of its pathogenic properties.

2.
Int J Mol Sci ; 22(24)2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34948248

RESUMO

The bacterial proteins of the Dsb family catalyze the formation of disulfide bridges between cysteine residues that stabilize protein structures and ensure their proper functioning. Here, we report the detailed analysis of the Dsb pathway of Campylobacter jejuni. The oxidizing Dsb system of this pathogen is unique because it consists of two monomeric DsbAs (DsbA1 and DsbA2) and one dimeric bifunctional protein (C8J_1298). Previously, we showed that DsbA1 and C8J_1298 are redundant. Here, we unraveled the interaction between the two monomeric DsbAs by in vitro and in vivo experiments and by solving their structures and found that both monomeric DsbAs are dispensable proteins. Their structures confirmed that they are homologs of EcDsbL. The slight differences seen in the surface charge of the proteins do not affect the interaction with their redox partner. Comparative proteomics showed that several respiratory proteins, as well as periplasmic transport proteins, are targets of the Dsb system. Some of these, both donors and electron acceptors, are essential elements of the C. jejuni respiratory process under oxygen-limiting conditions in the host intestine. The data presented provide detailed information on the function of the C. jejuni Dsb system, identifying it as a potential target for novel antibacterial molecules.


Assuntos
Oxirredutases/metabolismo , Proteínas Periplásmicas/metabolismo , Isomerases de Dissulfetos de Proteínas/genética , Isomerases de Dissulfetos de Proteínas/metabolismo , Sequência de Aminoácidos , Fenômenos Fisiológicos Bacterianos , Proteínas de Bactérias/metabolismo , Campylobacter jejuni/patogenicidade , Campylobacter jejuni/fisiologia , Dissulfetos/metabolismo , Oxirredução , Oxirredutases/genética , Periplasma/metabolismo , Proteínas Periplásmicas/genética , Homologia de Sequência de Aminoácidos
3.
PLoS One ; 15(3): e0230366, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32203539

RESUMO

Posttranslational generation of disulfide bonds catalyzed by bacterial Dsb (disulfide bond) enzymes is essential for the oxidative folding of many proteins. Although we now have a good understanding of the Escherichia coli disulfide bond formation system, there are significant gaps in our knowledge concerning the Dsb systems of other bacteria, including Campylobacter jejuni, a food-borne, zoonotic pathogen. We attempted to gain a more complete understanding of the process by thorough analysis of C8J_1298 functioning in vitro and in vivo. C8J_1298 is a homodimeric thiol-oxidoreductase present in wild type (wt) cells, in both reduced and oxidized forms. The protein was previously described as a homolog of DsbC, and thus potentially should be active in rearrangement of disulfides. Indeed, biochemical studies with purified protein revealed that C8J_1298 shares many properties with EcDsbC. However, its activity in vivo is dependent on the genetic background, namely, the set of other Dsb proteins present in the periplasm that determine the redox conditions. In wt C. jejuni cells, C8J_1298 potentially works as a DsbG involved in the control of the cysteine sulfenylation level and protecting single cysteine residues from oxidation to sulfenic acid. A strain lacking only C8J_1298 is indistinguishable from the wild type strain by several assays recognized as the criteria to determine isomerization or oxidative Dsb pathways. Remarkably, in C. jejuni strain lacking DsbA1, the protein involved in generation of disulfides, C8J_1298 acts as an oxidase, similar to the homodimeric oxidoreductase of Helicobater pylori, HP0231. In E. coli, C8J_1298 acts as a bifunctional protein, also resembling HP0231. These findings are strongly supported by phylogenetic data. We also showed that CjDsbD (C8J_0565) is a C8J_1298 redox partner.


Assuntos
Campylobacter jejuni/enzimologia , Dissulfetos/metabolismo , Proteínas Periplásmicas/metabolismo , Proteína Dissulfeto Redutase (Glutationa)/metabolismo , Sequência de Aminoácidos , Campylobacter jejuni/genética , Escherichia coli/enzimologia , Escherichia coli/genética , Helicobacter pylori/enzimologia , Helicobacter pylori/genética , Oxirredução , Periplasma/enzimologia , Proteínas Periplásmicas/genética , Filogenia , Proteína Dissulfeto Redutase (Glutationa)/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...