Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 12(8): 4140-5, 2012 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-22746202

RESUMO

This paper reports the radio frequency (RF) performance of InAs nanomembrane transistors on both mechanically rigid and flexible substrates. We have employed a self-aligned device architecture by using a T-shaped gate structure to fabricate high performance InAs metal-oxide-semiconductor field-effect transistors (MOSFETs) with channel lengths down to 75 nm. RF measurements reveal that the InAs devices made on a silicon substrate exhibit a cutoff frequency (f(t)) of ∼165 GHz, which is one of the best results achieved in III-V MOSFETs on silicon. Similarly, the devices fabricated on a bendable polyimide substrate provide a f(t) of ∼105 GHz, representing the best performance achieved for transistors fabricated directly on mechanically flexible substrates. The results demonstrate the potential of III-V-on-insulator platform for extremely high-frequency (EHF) electronics on both conventional silicon and flexible substrates.

2.
Nano Lett ; 12(7): 3592-5, 2012 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-22694195

RESUMO

One of the major challenges in further advancement of III-V electronics is to integrate high mobility complementary transistors on the same substrate. The difficulty is due to the large lattice mismatch of the optimal p- and n-type III-V semiconductors. In this work, we employ a two-step epitaxial layer transfer process for the heterogeneous assembly of ultrathin membranes of III-V compound semiconductors on Si/SiO(2) substrates. In this III-V-on-insulator (XOI) concept, ultrathin-body InAs (thickness, 13 nm) and InGaSb (thickness, 7 nm) layers are used for enhancement-mode n- and p- MOSFETs, respectively. The peak effective mobilities of the complementary devices are ∼1190 and ∼370 cm(2)/(V s) for electrons and holes, respectively, both of which are higher than the state-of-the-art Si MOSFETs. We demonstrate the first proof-of-concept III-V CMOS logic operation by fabricating NOT and NAND gates, highlighting the utility of the XOI platform.

3.
Nano Lett ; 12(4): 2060-6, 2012 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-22409386

RESUMO

As of yet, III-V p-type field-effect transistors (p-FETs) on Si have not been reported, due partly to materials and processing challenges, presenting an important bottleneck in the development of complementary III-V electronics. Here, we report the first high-mobility III-V p-FET on Si, enabled by the epitaxial layer transfer of InGaSb heterostructures with nanoscale thicknesses. Importantly, the use of ultrathin (thickness, ~2.5 nm) InAs cladding layers results in drastic performance enhancements arising from (i) surface passivation of the InGaSb channel, (ii) mobility enhancement due to the confinement of holes in InGaSb, and (iii) low-resistance, dopant-free contacts due to the type III band alignment of the heterojunction. The fabricated p-FETs display a peak effective mobility of ~820 cm(2)/(V s) for holes with a subthreshold swing of ~130 mV/decade. The results present an important advance in the field of III-V electronics.


Assuntos
Antimônio/química , Gálio/química , Índio/química , Membranas Artificiais , Nanoestruturas/química , Silício/química , Transistores Eletrônicos , Tamanho da Partícula , Porosidade , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...