Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioorg Med Chem ; 95: 117499, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37879145

RESUMO

The inhibition of human urokinase-type plasminogen activator (huPA), a serine protease that plays an important role in pericellular proteolysis, is a promising strategy to decrease the invasive and metastatic activity of tumour cells. However, the generation of selective small molecule huPA inhibitors has proven to be challenging due to the high structural similarity of huPA to other paralogue serine proteases. Efforts to generate more specific therapies have led to the development of cyclic peptide-based inhibitors with much higher selectivity against huPA. While this latter property is desired, the sparing of the orthologue murine poses difficulties for the testing of the inhibitor in preclinical mouse model. In this work, we have applied a Darwinian evolution-based approach to identify phage-encoded bicyclic peptide inhibitors of huPA with better cross-reactivity towards murine uPA (muPA). The best selected bicyclic peptide (UK132) inhibited huPA and muPA with Ki values of 0.33 and 12.58 µM, respectively. The inhibition appears to be specific for uPA, as UK132 only weakly inhibits a panel of structurally similar serine proteases. Removal or substitution of the second loop with one not evolved in vitro led to monocyclic and bicyclic peptide analogues with lower potency than UK132. Moreover, swapping of 1,3,5-tris-(bromomethyl)-benzene with different small molecules not used in the phage selection, resulted in an 80-fold reduction of potency, revealing the important structural role of the branched cyclization linker. Further substitution of an arginine in UK132 to a lysine resulted in a bicyclic peptide UK140 with enhanced inhibitory potency against both huPA (Ki = 0.20 µM) and murine orthologue (Ki = 2.79 µM). By combining good specificity, nanomolar affinity and a low molecular mass, the bicyclic peptide inhibitor developed in this work may provide a novel human and murine cross-reactive lead for the development of a potent and selective anti-metastatic therapy.


Assuntos
Peptídeos , Ativador de Plasminogênio Tipo Uroquinase , Camundongos , Humanos , Animais , Ativador de Plasminogênio Tipo Uroquinase/química , Peptídeos/farmacologia , Peptídeos/química , Serina Proteases , Peptídeos Cíclicos/farmacologia , Peptídeos Cíclicos/química
2.
Gels ; 9(9)2023 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-37754414

RESUMO

Despite process similarities, distinctive manufacturing technologies offer hyaluronic acid dermal fillers with different in vitro physicochemical and rheological properties due to peculiar crosslinked hydrogel networks. A better understanding of dermal filler properties could provide specific clinical indications and expectations with more accurate performance correlations. In this study, with an emphasis on the degree of modification, hyaluronic acid concentration and molecular weight, these process parameters were able to modulate dermal filler properties, especially rheology. Moreover, an extensive characterization of commercial hyaluronic acid injectables of the Hyal System line was described to present product properties and help to elucidate related clinical effects. Standardized methodologies were applied to correlate in vitro parameters with feasible clinical indications. In view of an optimized dermal filler design, the results of the extrudability measurements allowed the quantification of the effect of hydrogel composition, rheological properties and needle size on injectability. Composition, dynamic viscosity and needle size showed an impactful influence on hydrogel extrudability. Finally, the positive influence of 200 KDa hyaluronic acid in comparison to fragments of ether-crosslinked hyaluronic acid on fibroblast recognition were shown with a migration assay.

3.
J Pharm Sci ; 111(9): 2505-2513, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35405122

RESUMO

During osteoarthritis (OA) development, chondrocytes progressively decompensate, upregulating proteolytic enzymes and reducing the key growth factors involved in promoting chondrocyte anabolism. A combined therapeutic approach is needed to address this multifactorial pathology, which affects the whole joint. Based on the literature, three promising targets for OA treatment have been selected: MMP3 (matrix metallopeptidase 3), TRPV4 (transient receptor potential cation channel subfamily V member 4) and mTOR (mammalian target of rapamycin). In this study, a novel water-soluble and biocompatible amphiphilic polymer named "sHA-oleylamide" was synthesized and screened from a series of hyaluronic acid derivatives for its anticatabolic activity. This MMP inhibitor showed no cytotoxicity, and in an in vitro model of inflammatory OA, it reversed the inflammatory outcome at a concentration of 0.011 mg/mL. The ability of sHA-oleylamide to form 20-50 nm micelles in water with a critical micelle concentration of 0.27±0.1 mg/mL, was confirmed by TEM images and measured by Nile red staining. RN-1747 and rapamycin molecules were successfully loaded in sHA-oleylamide, previously prepared at 12 mg/mL in PBS; both formulations were stable, sterile and confirmed in vitro to have mTOR inhibition by rapamycin and TRPV4 activation activity by RN-1747. The controlled release of RN-1747 from the micellar formulation with sHA-oleylamide showed that only approximately 60% of the total loaded RN-1747 was released within 7 days. These micellar formulations can potentially increase the bioavailability and pharmaceutical efficacy of the selected active molecules, combining their anti-catabolic and pro-anabolic activities and making them suitable for i.a. administration as OA treatments.


Assuntos
Ácido Hialurônico , Osteoartrite , Sistemas de Liberação de Medicamentos , Humanos , Ácido Hialurônico/uso terapêutico , Micelas , Osteoartrite/tratamento farmacológico , Osteoartrite/metabolismo , Osteoartrite/patologia , Sirolimo , Sulfatos , Serina-Treonina Quinases TOR/metabolismo , Canais de Cátion TRPV , Água/metabolismo
4.
IUBMB Life ; 74(10): 927-942, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35218610

RESUMO

Hyaluronan (HA) is a component of the extracellular matrix (ECM) it is the main non-sulfated glycosaminoglycan able to modulate cell behavior in the healthy and tumor context. Sulfated hyaluronan (sHA) is a biomaterial derived from chemical modifications of HA, since this molecule is not naturally sulfated. The HA sulfation modifies several properties of the native molecule, acquiring antitumor properties in different cancers. In this study, we evaluated the action of sHA of ~30-60 kDa with different degrees of sulfation (0.7 sHA1 and 2.5 sHA3) on tumor cells of a breast, lung, and colorectal cancer model and its action on other cells of the tumor microenvironment, such as endothelial and monocytes/macrophage cells. Our data showed that in breast and lung tumor cells, sHA3 is able to modulate cell viability, cytotoxicity, and proliferation, but no effects were observed on colorectal cancer cells. In 3D cultures of breast and lung cancer cells, sHA3 diminished the size of the tumorsphere and modulated total HA levels. In these tumor models, treatment of monocytes/macrophages with sHA3 showed a downregulation of the expression of angiogenic factors. We also observed a decrease in endothelial cell migration and modulation of the hyaluronan-binding protein TSG-6. In the breast in vivo xenograft model, monocytes/macrophages preincubated with sHA1 or sHA3 decreased tumor vasculature, TSG-6 and HA levels. Besides, in silico analysis showed an association of TSG-6, HAS2, and IL-8 with biological processes implicated in the progression of the tumor. Taken together, our data indicate that sHA in a breast and lung tumor context is able to induce an antiangiogenic action on tumor cells as well as in monocytes/macrophages (Mo/MØ) by modulation of endothelial migration, angiogenic factors, and vessel formation.


Assuntos
Neoplasias Colorretais , Neoplasias Pulmonares , Materiais Biocompatíveis , Neoplasias Colorretais/tratamento farmacológico , Humanos , Receptores de Hialuronatos , Ácido Hialurônico/química , Ácido Hialurônico/farmacologia , Interleucina-8 , Pulmão , Neoplasias Pulmonares/tratamento farmacológico , Macrófagos , Monócitos , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/genética , Sulfatos/química , Sulfatos/farmacologia , Microambiente Tumoral
5.
Front Mol Biosci ; 8: 703715, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34368231

RESUMO

ADAM and ADAMTS are two large metalloproteinase families involved in numerous physiological processes, such as shedding of cell-surface protein ectodomains and extra-cellular matrix remodelling. Aberrant expression or dysregulation of ADAMs and ADAMTSs activity has been linked to several pathologies including cancer, inflammatory, neurodegenerative and cardiovascular diseases. Inhibition of ADAM and ADAMTS metalloproteinases have been attempted using various small molecules and protein-based therapeutics, each with their advantages and disadvantages. While most of these molecular formats have already been described in detail elsewhere, this mini review focuses solely on peptide-based inhibitors, an emerging class of therapeutic molecules recently applied against some ADAM and ADAMTS members. We describe both linear and cyclic peptide-based inhibitors which have been developed using different approaches ranging from traditional medicinal chemistry and rational design strategies to novel combinatorial peptide-display technologies.

6.
Osteoarthr Cartil Open ; 3(2): 100159, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36474988

RESUMO

Objective: Osteoarthritis (OA) is a painful degenerative disease of the whole joint structure, including articular cartilage, synovial fluid, and subchondral bone. Hyaluronic acid (HA), an anionic non-sulfated glycosaminoglycan, is commonly used for intra-articular (IA) treatment in OA, while bisphosphonates (BPs) are anti-resorptive drugs that act on the bone. Here, a novel conjugate with a covalent and hydrolysable linker between HA and alendronate (ALD) was designed as an attractive therapeutic strategy for IA drug delivery. Design: The HA-ALD derivative was synthesized and tested in comparison with a simple mixture of HA and ALD for in vitro ALD release, rheological properties, cytotoxicity towards osteoblasts and chondrocytes and in an in vitro efficacy assay of OA inflammatory model on bovine cartilage explants. Results: The structure of HA-ALD was elucidated exhibiting no depolymerization and efficient drug incorporation. The controlled ALD release in vitro was slower compared to the simple mixture of HA and ALD; moreover, the derivative showed calcium-tuned rheological properties. The absence of cytotoxicity towards osteoblasts and chondrocytes was shown for up to 7 days, and the viability of chondrocytes was confirmed by fluorescence microscopy. Finally, a reduction in collagen release and MMP-13 expression was measured in the OA inflammatory model. Conclusion: This new HA-ALD derivative opens the door to a new approach for OA treatment, as it combines viscosupplementation and biological effects of HA with the pharmacological activity of BPs. Prolonged ALD release increased rheological properties and beneficial effect against cartilage degradation make it a promising IA therapy for OA.

7.
Medchemcomm ; 10(9): 1569-1580, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31803399

RESUMO

Genetically encoded peptides possess unique properties, such as a small molecular weight and ease of synthesis and modification, that make them suitable to a large variety of applications. However, despite these favorable qualities, naturally occurring peptides are often limited by intrinsic weak binding affinities, poor selectivity and low stability that ultimately restrain their final use. To overcome these limitations, a large variety of in vitro display methodologies have been developed over the past few decades to evolve genetically encoded peptide molecules with superior properties. Phage display, mRNA display, ribosome display, bacteria display, and yeast display are among the most commonly used methods to engineer peptides. While most of these in vitro methodologies have already been described in detail elsewhere, this review describes solely the yeast surface display technology and its valuable use for the evolution of a wide range of peptide formats.

8.
Biofouling ; 34(7): 719-730, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30270674

RESUMO

A series of new hyaluronan derivatives was synthesized and tested as an antibiotic release system by antibacterial and osseointegration assays. Specifically, partially sulphated hyaluronic acid (sHA) was functionalized with dopamine (DA). The DA moiety guarantees good performance as a binding agent for coating a titanium alloy surface; furthermore, the negatively charged sHA has bone regenerative effects and a high binding affinity for positively charged antibiotics. A sHA scaffold with a defined degree of sulphation (DS =2) was selected as a good compromise between a high negative charge density and poor heparin-like anticoagulant activity, while the degree of DA derivatization (17.1%mol) was chosen based on the absence of cytotoxic activity and the promotion of osteoblast proliferation. The titanium alloy coating was investigated indirectly using a fluorescent probe and directly by environmental scanning electron microscope (ESEM) analysis. Long-duration antibiotic release was demonstrated in vitro, and antibacterial efficacy against a Staphylococcus aureus culture was shown.


Assuntos
Antibacterianos/administração & dosagem , Materiais Revestidos Biocompatíveis/farmacologia , Ácido Hialurônico/análogos & derivados , Osseointegração/efeitos dos fármacos , Infecções Relacionadas à Prótese/prevenção & controle , Infecções Estafilocócicas/prevenção & controle , Ligas , Biofilmes , Dopamina , Testes de Sensibilidade Microbiana , Próteses e Implantes , Staphylococcus aureus , Sulfatos/farmacologia , Propriedades de Superfície , Titânio
9.
Carbohydr Res ; 433: 47-53, 2016 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-27442913

RESUMO

Hyaluronic Acid (HA) is a non-sulphated glycosaminoglycan that, despite its high molecular weight, is soluble in water and is not resistant to enzymatic degradation, the latter of which hinders its wider application as a biomedical material. Auto-crosslinked polymer (ACP) gels of HA are fully biocompatible hydrogels that exhibit improved viscoelastic properties and prolonged in vivo residence times compared to the native polymer. Crosslinking is achieved through a base-catalysed reaction consisting of the activation of HA carboxyl groups by 2-chloro-1-methylpyridinium iodide (CMPI) and subsequent nucleophilic acyl substitution by the hydroxyl groups of HA in organic solvent. In this study, a number of ACP hydrogels have been obtained via reactions using varying ratios of CMPI to HA. The crosslinking reaction was monitored by rheological measurements in organic solvents during CMPI addition to the reaction mixture. The ACP intermediates, powders and hydrogels were characterized, helping to elucidate the crosslinking process. A two-step mechanism was proposed to explain the observed trends in viscosity and particle size. Syntheses were carried out by varying the reaction temperature, respectively at 0 °C, 25 °C and 45 °C in N-Methyl-2-Pyrrolidone (NMP), as well as the solvent respectively in NMP, DMSO and DMF at 25 °C. Interestingly, varying these parameters did not substantially affect the degree of crosslinking but likely did influence the intra/inter-molecular crosslinking ratio and, therefore, the viscoelastic properties. A wide range of crosslinking densities was confirmed through ESEM analysis. Finally, a comparative hyaluronidase degradation assay revealed that the ACPs exhibited a higher resistance toward enzymatic cleavage at low elastic modulus compared to other more chemically resistant, crosslinked HAs. These observations demonstrated the importance of crosslinking density of matrix structures on substrate availability.


Assuntos
Ácido Hialurônico/química , Hidrogéis/síntese química , Compostos de Quinolínio/química , Materiais Biocompatíveis/síntese química , Materiais Biocompatíveis/química , Biopolímeros/química , Reagentes de Ligações Cruzadas/química , Hialuronoglucosaminidase/metabolismo , Hidrogéis/química , Tamanho da Partícula , Reologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...