Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Sensors (Basel) ; 22(6)2022 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-35336564

RESUMO

Autonomous trust mechanisms enable Internet of Things (IoT) devices to function cooperatively in a wide range of ecosystems, from vehicle-to-vehicle communications to mesh sensor networks. A common property desired in such networks is a mechanism to construct a secure, authenticated channel between any two participating nodes to share sensitive information, nominally a challenging proposition for a large, heterogeneous network where node participation is constantly in flux. This work explores a contract-theoretic framework that exploits the principles of network economics to crowd-source trust between two arbitrary nodes based on the efforts of their neighbors. Each node in the network possesses a trust score, which is updated based on useful effort contributed to the authentication step. The scheme functions autonomously on locally adjacent nodes and is proven to converge onto an optimal solution based on the available nodes and their trust scores. Core building blocks include the use of Stochastic Learning Automata to select the participating nodes based on network and social metrics, and the formulation of a Bayesian trust belief distribution from the past behavior of the selected nodes. An effort-reward model incentivizes selected nodes to accurately report their trust scores and contribute their effort to the authentication process. Detailed numerical results obtained via simulation highlight the proposed framework's efficacy and performance. The performance achieved near-optimal results despite incomplete information regarding the IoT nodes' trust scores and the presence of malicious or misbehaving nodes. Comparison metrics demonstrate that the proposed approach maximized the overall social welfare and achieved better performance compared to the state of the art in the domain.


Assuntos
Internet das Coisas , Algoritmos , Teorema de Bayes , Redes de Comunicação de Computadores , Ecossistema , Confiança , Tecnologia sem Fio
2.
Sensors (Basel) ; 21(7)2021 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-33808160

RESUMO

Internet of Things (IoT) devices rely upon remote firmware updates to fix bugs, update embedded algorithms, and make security enhancements. Remote firmware updates are a significant burden to wireless IoT devices that operate using low-power wide-area network (LPWAN) technologies due to slow data rates. One LPWAN technology, Long Range (LoRa), has the ability to increase the data rate at the expense of range and noise immunity. The optimization of communications for maximum speed is known as adaptive data rate (ADR) techniques, which can be applied to accelerate the firmware update process for any LoRa-enabled IoT device. In this paper, we investigate ADR techniques in an application that provides remote monitoring of cattle using small, battery-powered devices that transmit data on cattle location and health using LoRa. In addition to issues related to firmware update speed, there are significant concerns regarding reliability and security when updating firmware on mobile, energy-constrained devices. A malicious actor could attempt to steal the firmware to gain access to embedded algorithms or enable faulty behavior by injecting their own code into the device. A firmware update could be subverted due to cattle moving out of the LPWAN range or the device battery not being sufficiently charged to complete the update process. To address these concerns, we propose a secure and reliable firmware update process using ADR techniques that is applicable to any mobile or energy-constrained LoRa device. The proposed system is simulated and then implemented to evaluate its performance and security properties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...