Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 6(47): 31667-31676, 2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34869990

RESUMO

Cannabis sativa L. produces over 200 known secondary metabolites that contribute to its distinctive aroma. Studies on compounds traditionally associated with the scent of this plant have focused on those within the terpenoid class. These isoprene-derived compounds are ubiquitous in nature and are the major source of many plant odors. Nonetheless, there is little evidence that they provide the characteristic "skunk-like" aroma of cannabis. To uncover the chemical origins of this scent, we measured the aromatic properties of cannabis flowers and concentrated extracts using comprehensive two-dimensional gas chromatography equipped with time-of-flight mass spectrometry, flame ionization detection, and sulfur chemiluminescence. We discovered a new family of volatile sulfur compounds (VSCs) containing the prenyl (3-methylbut-2-en-1-yl) functional group that is responsible for this scent. In particular, the compound 3-methyl-2-butene-1-thiol was identified as the primary odorant. We then conducted an indoor greenhouse experiment to monitor the evolution of these compounds during the plant's lifecycle and throughout the curing process. We found that the concentrations of these compounds increase substantially during the last weeks of the flowering stage, reach a maximum during curing, and then drop after just one week of storage. These results shed light on the chemical origins of the characteristic aroma of cannabis and how volatile sulfur compound production evolves during plant growth. Furthermore, the chemical similarity between this new family of VSCs and those found in garlic (allium sativum) suggests an opportunity to also investigate their potential health benefits.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...