Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Imaging ; 9(4)2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-37103231

RESUMO

This paper focuses on image and video content analysis of handball scenes and applying deep learning methods for detecting and tracking the players and recognizing their activities. Handball is a team sport of two teams played indoors with the ball with well-defined goals and rules. The game is dynamic, with fourteen players moving quickly throughout the field in different directions, changing positions and roles from defensive to offensive, and performing different techniques and actions. Such dynamic team sports present challenging and demanding scenarios for both the object detector and the tracking algorithms and other computer vision tasks, such as action recognition and localization, with much room for improvement of existing algorithms. The aim of the paper is to explore the computer vision-based solutions for recognizing player actions that can be applied in unconstrained handball scenes with no additional sensors and with modest requirements, allowing a broader adoption of computer vision applications in both professional and amateur settings. This paper presents semi-manual creation of custom handball action dataset based on automatic player detection and tracking, and models for handball action recognition and localization using Inflated 3D Networks (I3D). For the task of player and ball detection, different configurations of You Only Look Once (YOLO) and Mask Region-Based Convolutional Neural Network (Mask R-CNN) models fine-tuned on custom handball datasets are compared to original YOLOv7 model to select the best detector that will be used for tracking-by-detection algorithms. For the player tracking, DeepSORT and Bag of tricks for SORT (BoT SORT) algorithms with Mask R-CNN and YOLO detectors were tested and compared. For the task of action recognition, I3D multi-class model and ensemble of binary I3D models are trained with different input frame lengths and frame selection strategies, and the best solution is proposed for handball action recognition. The obtained action recognition models perform well on the test set with nine handball action classes, with average F1 measures of 0.69 and 0.75 for ensemble and multi-class classifiers, respectively. They can be used to index handball videos to facilitate retrieval automatically. Finally, some open issues, challenges in applying deep learning methods in such a dynamic sports environment, and direction for future development will be discussed.

2.
Sensors (Basel) ; 20(5)2020 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-32182649

RESUMO

In team sports training scenes, it is common to have many players on the court, each with his own ball performing different actions. Our goal is to detect all players in the handball court and determine the most active player who performs the given handball technique. This is a very challenging task, for which, apart from an accurate object detector, which is able to deal with complex cluttered scenes, additional information is needed to determine the active player. We propose an active player detection method that combines the Yolo object detector, activity measures, and tracking methods to detect and track active players in time. Different ways of computing player activity were considered and three activity measures are proposed based on optical flow, spatiotemporal interest points, and convolutional neural networks. For tracking, we consider the use of the Hungarian assignment algorithm and the more complex Deep SORT tracker that uses additional visual appearance features to assist the assignment process. We have proposed the evaluation measure to evaluate the performance of the proposed active player detection method. The method is successfully tested on a custom handball video dataset that was acquired in the wild and on basketball video sequences. The results are commented on and some of the typical cases and issues are shown.


Assuntos
Atletas/classificação , Processamento de Imagem Assistida por Computador/métodos , Esportes/fisiologia , Gravação em Vídeo/métodos , Algoritmos , Mãos/fisiologia , Humanos , Esportes/normas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...