Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Clin Oral Investig ; 22(2): 929-940, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28691145

RESUMO

OBJECTIVES: The design of nanocarriers for local drug administration to the lining mucosa requires a sound knowledge of how nanoparticles (NPs) interact with saliva. This contact determines whether NPs agglomerate and become immobile due to size- and interaction-filtering effects or adsorb on the cell surface and are internalized by epithelial cells. The aim of this study was to examine the behavior of NPs in saliva considering physicochemical NP properties. MATERIALS AND METHODS: The salivary pore-size distribution was determined, and the viscosity of the fluid inside of the pores was studied with optical tweezers. Distinct functionalized NPs (20 and 200 nm) were dispersed in saliva and salivary buffers and characterized, and surface-bound MUC5B and MUC7 were analyzed by 1D electrophoresis and immunoblotting. NP mobility was recorded, and cellular uptake studies were performed with TR146 cells. RESULTS: The mode diameter of the salivary mesh pores is 0.7 µm with a peak width of 1.9 µm, and pores are filled with a low-viscosity fluid. The physicochemical properties of the NPs affected the colloidal stability and mobility: compared with non-functionalized particles, which did not agglomerate and showed a cellular uptake rate of 2.8%, functionalized particles were immobilized, which was correlated with agglomeration and increased binding to mucins. CONCLUSION: The present study showed that the salivary microstructure facilitates NP adsorption. However, NP size and surface functionalization determine the colloidal stability and cellular interactions. CLINICAL RELEVANCE: The sound knowledge of NP interactions with saliva enables the improvement of current treatment strategies for inflammatory oral diseases.


Assuntos
Nanopartículas/química , Saliva/química , Adulto , Voluntários Saudáveis , Humanos , Immunoblotting , Pessoa de Meia-Idade , Mucinas/química , Porosidade , Proteínas e Peptídeos Salivares/análise , Viscosidade
2.
Nat Commun ; 8(1): 213, 2017 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-28790301

RESUMO

It is generally accepted that planktonic bacteria in dilute suspensions are not mechanically coupled and do not show correlated motion. The mechanical coupling of cells is a trait that develops upon transition into a biofilm, a microbial community of self-aggregated bacterial cells. Here we employ optical tweezers to show that bacteria in dilute suspensions are mechanically coupled and show long-range correlated motion. The strength of the coupling increases with the growth of liquid bacterial culture. The matrix responsible for the mechanical coupling is composed of cell debris and extracellular polymer material. The fragile network connecting cells behaves as viscoelastic liquid of entangled extracellular polymers. Our findings point to physical connections between bacteria in dilute bacterial suspensions that may provide a mechanistic framework for understanding of biofilm formation, osmotic flow of nutrients, diffusion of signal molecules in quorum sensing, or different efficacy of antibiotic treatments at low and high bacterial densities.Planktonic bacteria are untethered to surfaces or to each other, and thus are expected to move independently when at low cell densities. Here Sretenovic et al. show, using optical tweezers, that bacteria in dilute suspensions are mechanically coupled and show long-range correlated motion.


Assuntos
Bactérias/química , Plâncton/microbiologia , Fenômenos Fisiológicos Bacterianos , Biofilmes , Fenômenos Biomecânicos
3.
Biophys J ; 108(3): 758-65, 2015 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-25650942

RESUMO

We studied the viscoelastic properties of homogeneous and inhomogeneous levan-DNA mixtures using optical tweezers and a rotational rheometer. Levan and DNA are important components of the extracellular matrix of bacterial biofilms. Their viscoelastic properties influence the mechanical as well as molecular-transport properties of biofilm. Both macro- and microrheology measurements in homogeneous levan-DNA mixtures revealed pseudoplastic behavior. When the concentration of DNA reached a critical value, levan started to aggregate, forming clusters of a few microns in size. Microrheology using optical tweezers enabled us to measure local viscoelastic properties within the clusters as well as in the DNA phase surrounding the levan aggregates. In phase-separated levan-DNA mixtures, the results of macro- and microrheology differed significantly. The local viscosity and elasticity of levan increased, whereas the local viscosity of DNA decreased. On the other hand, the results of bulk viscosity measurements suggest that levan clusters do not interact strongly with DNA. Upon treatment with DNase, levan aggregates dispersed. These results demonstrate the advantages of microrheological measurements compared to bulk viscoelastic measurements when the materials under investigation are complex and inhomogeneous, as is often the case in biological samples.


Assuntos
Bactérias/metabolismo , Biofilmes/crescimento & desenvolvimento , DNA/química , Elasticidade , Frutanos/química , Reologia , Animais , Peixes , Masculino , Microscopia de Interferência , Soluções , Viscosidade
4.
Appl Opt ; 52(26): 6506-11, 2013 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-24085126

RESUMO

Novel fluorescence microscopy techniques and two-color laser direct imaging photolithography methods that enable resolution an order of magnitude beyond the diffraction limit require Laguerre-Gaussian beams and a fast and precise laser beam steering device to obtain images and produce microstructures. An acousto-optic deflector (AOD) is a suitable choice and provides high-speed random access beam positioning with subnanometer precision as well as beam intensity control in a single element. In high-resolution applications, the impact of an AOD on beam quality plays a major role. We study the transfer function of an AOD for a fundamental Gaussian and a doughnut-shaped Laguerre-Gaussian beam by measuring the beam quality as a function of the diffraction angle after passing through the device. It is demonstrated that an AOD introduces negligible distortion and degradation to the beam profile and is therefore highly suitable for use in super-resolution imaging and photolithography techniques where manipulation of Laguerre-Gaussian doughnut-shaped beams is required.

5.
Appl Opt ; 52(34): 8355-62, 2013 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-24513838

RESUMO

The bidirectional reflectance distribution functions of diffraction gratings were calculated by applying diffraction theory and transformed into goniospectrophotometric space curves. Gratings with parallel sinusoidal grooves having periods of 1-3.5 µm and amplitudes below 0.2 µm were analyzed. The obtained goniospectrophotometric space curves consist of lines with different slopes and possible interconnections. The slope of the lines is directly connected to the grating period and the length to the period and the amplitude. Such curves could be regarded as a simple appearance fingerprint of a diffraction grating. The ability of portable multiangle spectrophotometers to provide them for diffraction gratings is analyzed.

6.
Beilstein J Nanotechnol ; 3: 163-71, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22428106

RESUMO

Biological cilia are found on surfaces of some microorganisms and on surfaces of many eukaryotic cells where they interact with the surrounding fluid. The periodic beating of the cilia is asymmetric, resulting in directed swimming of unicellular organisms or in generation of a fluid flow above a ciliated surface in multicellular ones. Following the biological example, externally driven artificial cilia have recently been successfully implemented as micropumps and mixers. However, biomimetic systems are useful not only in microfluidic applications, but can also serve as model systems for the study of fundamental hydrodynamic phenomena in biological samples. To gain insight into the basic principles governing propulsion and fluid pumping on a micron level, we investigated hydrodynamics around one beating artificial cilium. The cilium was composed of superparamagnetic particles and driven along a tilted cone by a varying external magnetic field. Nonmagnetic tracer particles were used for monitoring the fluid flow generated by the cilium. The average flow velocity in the pumping direction was obtained as a function of different parameters, such as the rotation frequency, the asymmetry of the beat pattern, and the cilium length. We also calculated the velocity field around the beating cilium by using the analytical far-field expansion. The measured average flow velocity and the theoretical prediction show an excellent agreement.

7.
Biomicrofluidics ; 5(3): 34103-341039, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22662034

RESUMO

We observed and measured the fluid flow that was generated by an artificial cilium. The cilium was composed of superparamagnetic microspheres, in which magnetic dipole moments were induced by an external magnetic field. The interaction between the dipole moments resulted in formation of long chains-cilia, and the same external magnetic field was also used to drive the cilia in a periodic manner. Asymmetric periodic motion of the cilium resulted in generation of fluid flow and net pumping of the surrounding fluid. The flow and pumping performance were closely monitored by introducing small fluorescent tracer particles into the system. By detecting their motion, the fluid flow around an individual cilium was mapped and the flow velocities measured. We confirm that symmetric periodic beating of one cilium results in vortical motion only, whereas asymmetry is required for additional translational motion. We determine the effect of asymmetry on the pumping performance of a cilium, verify the theoretically predicted optimal pumping conditions, and determine the fluid behaviour around a linear array of three neighbouring cilia. In this case, the contributions of neighbouring cilia enhance the maximal flow velocity compared with a single cilium and contribute to a more uniform translational flow above the surface.

8.
Proc Natl Acad Sci U S A ; 107(5): 1844-7, 2010 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-19934055

RESUMO

Due to their small dimensions, microfluidic devices operate in the low Reynolds number regime. In this case, the hydrodynamics is governed by the viscosity rather than inertia and special elements have to be introduced into the system for mixing and pumping of fluids. Here we report on the realization of an effective pumping device that mimics a ciliated surface and imitates its motion to generate fluid flow. The artificial biomimetic cilia are constructed as long chains of spherical superparamagnetic particles, which self-assemble in an external magnetic field. Magnetic field is also used to actuate the cilia in a simple nonreciprocal manner, resulting in a fluid flow. We prove the concept by measuring the velocity of a cilia-pumped fluid as a function of height above the ciliated surface and investigate the influence of the beating asymmetry on the pumping performance. A numerical simulation was carried out that successfully reproduced the experimentally obtained data.


Assuntos
Cílios/fisiologia , Técnicas Analíticas Microfluídicas/instrumentação , Bioengenharia , Fenômenos Biofísicos , Coloides , Desenho de Equipamento , Magnetismo , Modelos Teóricos , Reologia
9.
Phys Rev Lett ; 101(23): 237801, 2008 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-19113594

RESUMO

We studied the confinement effect on the interaction force in nematic liquid crystal colloids with spherical particles inducing planar anchoring. Using magneto-optical tweezers, we measured the spatial dependence of the quadrupolar structural interparticle force over 4 orders of magnitude. For small separations, the interparticle potential follows the power law, whereas for separations larger than the sample thickness, it decreases exponentially with the decay length proportional to the sample thickness. Experimental results are reproduced by using the Landau-de Gennes free-energy minimization approach.

10.
Phys Rev Lett ; 96(20): 207801, 2006 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-16803208

RESUMO

Magneto-optic tweezers were used for measurements of liquid-crystal-mediated forces between spherical beads with tangential anchoring in thin nematic samples. Repulsive force, which results from the quadrupolar symmetry of defects around the immersed beads, decreases proportionally to 1/x6, with x being the bead separation. The velocity with which the particles are pushed apart also follows the same separation dependence. We thus find the effective drag coefficient gamma(eff) independent of x for surface-to-surface distances as small as 10% of the bead diameter.

11.
Biophys J ; 88(4): 2607-13, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15681650

RESUMO

Hormones are released from neuroendocrine cells by passing through an exocytotic pore that forms after vesicle and plasma membrane fusion. An elegant way to study this process at the single-vesicle level is to use styryl dyes, which stain not only the membrane, but also the matrix of individual vesicles in some neuroendocrine cells. However, the mechanism by which the vesicle matrix is stained is not completely clear. One possibility is that molecules of the styryl dye in the bath solution dissolve first in the plasma membrane and are then transported into the vesicle by lateral diffusion in the plane of the membrane, and finally the vesicle matrix is stained from the vesicle membrane. On the other hand, these molecules may enter the vesicle lumen and reach the vesicle matrix by permeation through an open aqueous fusion pore. To address these questions, we exposed pituitary lactotrophs to different concentrations of FM 4-64 to monitor the fluorescence increase of single vesicles by confocal microscopy after the stimulation of cells by high K(+). The results show that the membrane and the vesicle matrix exhibit different concentration-dependent properties: the plasma membrane staining by FM 4-64 has a higher affinity in comparison to the vesicle matrix. Moreover, the kinetics of vesicle loading by FM 4-64 exhibited a concentration-dependent process, which indicates that FM 4-64 molecules stain the vesicle matrix by aqueous permeation through an open fusion pore.


Assuntos
Corantes Fluorescentes/farmacologia , Compostos de Piridínio/farmacologia , Compostos de Amônio Quaternário/farmacologia , Vesículas Secretórias/química , Vesículas Secretórias/patologia , Coloração e Rotulagem/métodos , Animais , Membrana Celular/metabolismo , Relação Dose-Resposta a Droga , Eletrofisiologia , Exocitose , Cinética , Masculino , Microscopia Confocal , Modelos Estatísticos , Hipófise/metabolismo , Potássio/química , Ratos , Ratos Wistar
12.
FASEB J ; 18(11): 1270-2, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15180959

RESUMO

Hormones are released from cells by passing through an exocytotic pore that forms after vesicle and plasma membrane fusion. In stimulated exocytosis vesicle content is discharged swiftly. Although rapid vesicle discharge has also been proposed to mediate basal secretion, this has not been studied directly. We investigated basal hormone release by preloading fluorescent peptides into single vesicles. The hormone discharge, monitored with confocal microscopy, was compared with the simultaneous loading of vesicle by FM styryl dye. In stimulated vesicles FM 4-64 (4 microM), loading and hormone discharge occurs within seconds. In contrast, in approximately 50% of spontaneously releasing vesicles, the vesicle content discharge and the FM 4-64 loading were slow (approximately 3 min). These results show that in peptide secreting neuroendocrine cells the elementary vesicle content discharge differs in basal and in stimulated exocytosis. It is proposed that the view dating back for some decades, which is that, at rest, the vesicle discharge of hormones and neurotransmitters is similar to that occurring after stimulation, needs to be extended. In addition to the classical paradigm that secretory capacity of a cell is determined by controlling the probability of occurrence of elementary exocytotic events, one will have to consider activity modulation of elementary exocytotic events as well.


Assuntos
Exocitose/fisiologia , Adeno-Hipófise/metabolismo , Prolactina/metabolismo , Vesículas Secretórias/metabolismo , Animais , Fator Natriurético Atrial/metabolismo , Difusão , Exocitose/efeitos dos fármacos , Corantes Fluorescentes , Masculino , Fusão de Membrana , Microscopia Confocal , Modelos Biológicos , Técnicas de Patch-Clamp , Adeno-Hipófise/citologia , Cloreto de Potássio/farmacologia , Ratos , Ratos Wistar , Taxa Secretória , Vesículas Secretórias/efeitos dos fármacos , Transfecção
13.
Biophys J ; 82(1 Pt 1): 226-32, 2002 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-11751311

RESUMO

We have used the patch-clamp technique to monitor changes in membrane capacitance (C(m)) elicited by fast and spatially homogeneous rises in cytosolic calcium concentration ([Ca(2+)](i)) using flash photolysis of NP-EGTA. Average peak [Ca(2+)](i) amplitudes of 20-25 microM triggered three different types of responses in C(m): (i) In 42% of cells, a rise in [Ca(2+)](i) activated a monotonic increase in C(m) followed by a slow decline to resting values; (ii) In 30% of cells, the rise in C(m) was clearly characterized by two dynamic components, consisting of a rapid and a slow exo-endocytosis cycle; (iii) In 28% of cells, after the initial rapid rise in C(m), endocytosis exhibited excess retrieval that was characterized by a decline in C(m) below resting C(m). The aim of this work is to develop a unified mathematical model with a minimum number of parameters that would describe all the observed types of responses. Three models were considered: Model A, a model with a single component of exo-endocytosis cycle; model B, a model consisting of a sum of two independent dynamic components; and model C, a model in which, in addition to the two dynamic components as in model B, excess retrieval due to a lipid flow through the reversal closing of the fusion pore during the rapid component of exo-endocytosis cycle was considered. The results show that the latter model describes all the types of responses in C(m) recorded in rat melanotrophs. The association of excess retrieval exclusively with the rapid, but not the slow, exocytosis indicates that some fusing vesicles mediate a lipidic flux during the reversal closing of the fusion pore, whereas those entering the slow phase of exocytosis may fuse with the plasma membrane completely and are retrieved by other endocytic machinery, independent of the lipid flow that might have occurred as the fusion pore opened permanently.


Assuntos
Cálcio/metabolismo , Potenciais da Membrana/fisiologia , Hipófise/fisiologia , Animais , Citosol/metabolismo , Endocitose , Exocitose , Cinética , Modelos Biológicos , Fotólise , Hipófise/citologia , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...