Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
FEBS J ; 289(6): 1625-1649, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34694685

RESUMO

De novo thymidylate synthesis is a crucial pathway for normal and cancer cells. Deoxythymidine monophosphate (dTMP) is synthesized by the combined action of three enzymes: serine hydroxymethyltransferase (SHMT1), dihydrofolate reductase (DHFR) and thymidylate synthase (TYMS), with the latter two being targets of widely used chemotherapeutics such as antifolates and 5-fluorouracil. These proteins translocate to the nucleus after SUMOylation and are suggested to assemble in this compartment into the thymidylate synthesis complex. We report the intracellular dynamics of the complex in cancer cells by an in situ proximity ligation assay, showing that it is also detected in the cytoplasm. This result indicates that the role of the thymidylate synthesis complex assembly may go beyond dTMP synthesis. We have successfully assembled the dTMP synthesis complex in vitro, employing tetrameric SHMT1 and a bifunctional chimeric enzyme comprising human thymidylate synthase and dihydrofolate reductase. We show that the SHMT1 tetrameric state is required for efficient complex assembly, indicating that this aggregation state is evolutionarily selected in eukaryotes to optimize protein-protein interactions. Lastly, our results regarding the activity of the complete thymidylate cycle in vitro may provide a useful tool with respect to developing drugs targeting the entire complex instead of the individual components.


Assuntos
Timidina Monofosfato , Timidilato Sintase , Núcleo Celular/metabolismo , Glicina Hidroximetiltransferase/genética , Glicina Hidroximetiltransferase/metabolismo , Humanos , Tetra-Hidrofolato Desidrogenase/genética , Tetra-Hidrofolato Desidrogenase/metabolismo , Timidina Monofosfato/metabolismo , Timidilato Sintase/genética , Timidilato Sintase/metabolismo
2.
Int J Mol Sci ; 22(23)2021 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-34884931

RESUMO

Neuroblastoma is a severe childhood disease, accounting for ~10% of all infant cancers. The amplification of the MYCN gene, coding for the N-Myc transcription factor, is an essential marker correlated with tumor progression and poor prognosis. In neuroblastoma cells, the mitotic kinase Aurora-A (AURKA), also frequently overexpressed in cancer, prevents N-Myc degradation by directly binding to a highly conserved N-Myc region. As a result, elevated levels of N-Myc are observed. During recent years, it has been demonstrated that some ATP competitive inhibitors of AURKA also cause essential conformational changes in the structure of the activation loop of the kinase that prevents N-Myc binding, thus impairing the formation of the AURKA/N-Myc complex. In this study, starting from a screening of crystal structures of AURKA in complexes with known inhibitors, we identified additional compounds affecting the conformation of the kinase activation loop. We assessed the ability of such compounds to disrupt the interaction between AURKA and N-Myc in vitro, using Surface Plasmon Resonance competition assays, and in tumor cell lines overexpressing MYCN, by performing Proximity Ligation Assays. Finally, their effects on N-Myc cellular levels and cell viability were investigated. Our results identify PHA-680626 as an amphosteric inhibitor both in vitro and in MYCN overexpressing cell lines, thus expanding the repertoire of known conformational disrupting inhibitors of the AURKA/N-Myc complex and confirming that altering the conformation of the activation loop of AURKA with a small molecule is an effective strategy to destabilize the AURKA/N-Myc interaction in neuroblastoma cancer cells.


Assuntos
Aurora Quinase A/metabolismo , Proteína Proto-Oncogênica N-Myc/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Pirazóis/farmacologia , Pirróis/farmacologia , Trifosfato de Adenosina/metabolismo , Antineoplásicos/farmacologia , Aurora Quinase A/antagonistas & inibidores , Aurora Quinase A/química , Azepinas/metabolismo , Azepinas/farmacologia , Benzazepinas/metabolismo , Benzazepinas/farmacologia , Sítios de Ligação , Ligação Competitiva , Linhagem Celular , Avaliação Pré-Clínica de Medicamentos/métodos , Humanos , Proteína Proto-Oncogênica N-Myc/química , Neuroblastoma/tratamento farmacológico , Neuroblastoma/metabolismo , Conformação Proteica , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/metabolismo , Pirazóis/metabolismo , Pirimidinas/metabolismo , Pirimidinas/farmacologia , Pirróis/metabolismo , Ressonância de Plasmônio de Superfície
3.
Pharmaceuticals (Basel) ; 14(7)2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-34202402

RESUMO

The major cause of bacterial resistance to ß-lactams is the production of hydrolytic ß-lactamase enzymes. Nowadays, the combination of ß-lactam antibiotics with ß-lactamase inhibitors (BLIs) is the main strategy for overcoming such issues. Nevertheless, particularly challenging ß-lactamases, such as OXA-48, pose the need for novel and effective treatments. Herein, we describe the screening of a proprietary compound collection against Klebsiella pneumoniae OXA-48, leading to the identification of several chemotypes, like the 4-ideneamino-4H-1,2,4-triazole (SC_2) and pyrazolo[3,4-b]pyridine (SC_7) cores as potential inhibitors. Importantly, the most potent representative of the latter series (ID2, AC50 = 0.99 µM) inhibited OXA-48 via a reversible and competitive mechanism of action, as demonstrated by biochemical and X-ray studies; furthermore, it slightly improved imipenem's activity in Escherichia coli ATCC BAA-2523 ß-lactam resistant strain. Also, ID2 showed good solubility and no sign of toxicity up to the highest tested concentration, resulting in a promising starting point for further optimization programs toward novel and effective non-ß-lactam BLIs.

4.
J Med Chem ; 63(21): 13124-13139, 2020 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-33142057

RESUMO

A proprietary library of novel N-aryl-substituted amino acid derivatives bearing a hydroxamate head group allowed the identification of compound 3a that possesses weak proadipogenic and peroxisome proliferator-activated receptor γ (PPARγ) activating properties. The systematic optimization of 3a, in order to improve its PPARγ agonist activity, led to the synthesis of compound 7j (N-aryl-substituted valine derivative) that possesses dual PPARγ/PPARα agonistic activity. Structural and kinetic analyses reveal that 7j occupies the typical ligand binding domain of the PPARγ agonists with, however, a unique high-affinity binding mode. Furthermore, 7j is highly effective in preventing cyclin-dependent kinase 5-mediated phosphorylation of PPARγ serine 273. Although less proadipogenic than rosiglitazone, 7j significantly increases adipocyte insulin-stimulated glucose uptake and efficiently promotes white-to-brown adipocyte conversion. In addition, 7j prevents oleic acid-induced lipid accumulation in hepatoma cells. The unique biochemical properties and biological activities of compound 7j suggest that it would be a promising candidate for the development of compounds to reduce insulin resistance, obesity, and nonalcoholic fatty liver disease.


Assuntos
PPAR gama/metabolismo , Valina/análogos & derivados , Adipócitos/citologia , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Animais , Sítios de Ligação , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Glucose/metabolismo , Hepatócitos/citologia , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Cinética , Metabolismo dos Lipídeos/efeitos dos fármacos , Simulação de Acoplamento Molecular , PPAR alfa/agonistas , PPAR alfa/genética , PPAR alfa/metabolismo , PPAR gama/agonistas , PPAR gama/genética , Fosforilação/efeitos dos fármacos , Ligação Proteica , Ratos , Ativação Transcricional/efeitos dos fármacos , Valina/metabolismo , Valina/farmacologia
5.
Pharmaceuticals (Basel) ; 13(6)2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32492898

RESUMO

Matrix metalloproteinases (MMPs) are a family of enzymes involved at different stages of cancer progression and metastasis. We previously identified a novel class of bisphosphonic inhibitors, selective for MMPs crucial for bone remodeling, such as MMP-2. Due to the increasing relevance of specific MMPs at various stages of tumor malignancy, we focused on improving potency towards certain isoforms. Here, we tackled MMP-9 because of its confirmed role in tumor invasion, metastasis, angiogenesis, and immuno-response, making it an ideal target for cancer therapy. Using a computational analysis, we designed and characterized potent MMP-2/MMP-9 inhibitors. This is a promising approach to develop and clinically translate inhibitors that could be used in combination with standard care therapy for the treatment of skeletal malignancies.

6.
J Med Chem ; 63(9): 4811-4823, 2020 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-32239932

RESUMO

PPARγ represents a key target for the treatment of type 2 diabetes and metabolic syndrome. Synthetic antidiabetic drugs activating PPARγ are accompanied by serious undesirable side effects related to their agonism. In the search for new PPARγ regulators, inhibitors of PPARγ phosphorylation on S245 mediated by CDK5 represent an opportunity for the development of an improved generation of antidiabetic drugs acting through this nuclear receptor. We have employed a multidisciplinary approach, including protein-protein docking, X-ray crystallography, NMR, HDX, MD simulations, and site-directed mutagenesis to investigate conformational changes in PPARγ that impair the ability of CDK5 to interact with PPARγ and hence inhibit PPARγ phosphorylation. Finally, we describe an alternative inhibition mechanism adopted by a ligand bound far from the phosphorylation site.


Assuntos
PPAR gama/metabolismo , Fosforilação/efeitos dos fármacos , Sequência de Aminoácidos , Compostos de Bifenilo/química , Compostos de Bifenilo/metabolismo , Quinase 5 Dependente de Ciclina/metabolismo , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Mutagênese Sítio-Dirigida , Mutação , Proteínas do Tecido Nervoso/metabolismo , PPAR gama/antagonistas & inibidores , PPAR gama/química , PPAR gama/genética , Fenilpropionatos/química , Fenilpropionatos/metabolismo , Ligação Proteica , Conformação Proteica , Serina/química
7.
Front Chem ; 7: 910, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31998697

RESUMO

The aim of this study was to investigate the potential of surface plasmon resonance (SPR) spectroscopy for the measurement of real-time ligand-binding affinities and kinetic parameters for GPR17, a G protein-coupled receptor (GPCR) of major interest in medicinal chemistry as potential target in demyelinating diseases. The receptor was directly captured, in a single-step, from solubilized membrane extracts on the sensor chip through a covalently bound anti-6x-His-antibody and retained its ligand binding activity for over 24 h. Furthermore, our experimental setup made possible, after a mild regeneration step, to remove the bound receptor without damaging the antibody, and thus to reuse many times the same chip. Two engineered variants of GPR17, designed for crystallographic studies, were expressed in insect cells, extracted from crude membranes and analyzed for their binding with two high affinity ligands: the antagonist Cangrelor and the agonist Asinex 1. The calculated kinetic parameters and binding constants of ligands were in good agreement with those reported from activity assays and highlighted a possible functional role of the N-terminal residues of the receptor in ligand recognition and binding. Validation of SPR results was obtained by docking and molecular dynamics of GPR17-ligands interactions and by functional in vitro studies. The latter allowed us to confirm that Asinex 1 behaves as GPR17 receptor agonist, inhibits forskolin-stimulated adenylyl cyclase pathway and promotes oligodendrocyte precursor cell maturation and myelinating ability.

8.
J Med Chem ; 61(18): 8282-8298, 2018 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-30199253

RESUMO

A new series of derivatives of the PPARα/γ dual agonist 1 allowed us to identify the ligand ( S)-6 as a potent partial agonist of both PPARα and γ subtypes. X-ray studies in PPARγ revealed two different binding modes of ( S)-6 to the canonical site. However, ( S)-6 was also able to bind an alternative site as demonstrated by transactivation assay in the presence of a canonical PPARγ antagonist and supported from docking experiments. This compound did not activate the PPARγ-dependent program of adipocyte differentiation inducing a very less severe lipid accumulation compared to rosiglitazone but increased the insulin-stimulated glucose uptake in 3T3-L1 adipocytes. Finally, ( S)-6 inhibited the Cdk5-mediated phosphorylation of PPARγ at serine 273 that is currently considered the mechanism by which some PPARγ partial agonists exert antidiabetic effects similar to thiazolidinediones, without showing their typical side effects. This is the first PPARα/γ dual agonist reported to show this inhibitory effect representing the potential lead of a new class of drugs for treatment of dyslipidemic type 2 diabetes.


Assuntos
Quinase 5 Dependente de Ciclina/antagonistas & inibidores , Descoberta de Drogas , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , PPAR alfa/antagonistas & inibidores , PPAR gama/agonistas , PPAR gama/metabolismo , Propionatos/química , Propionatos/farmacologia , Células 3T3-L1 , Animais , Cristalografia por Raios X , Quinase 5 Dependente de Ciclina/química , Células Hep G2 , Humanos , Camundongos , Modelos Moleculares , Estrutura Molecular , Fosforilação , Conformação Proteica , Relação Estrutura-Atividade
9.
Methods ; 146: 12-25, 2018 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-29462658

RESUMO

Affinity-based methods using immobilized proteins are important approaches for understanding the interactions between small molecules and biological targets. This review is intended to provide an overview of different affinity based separation methods that have been applied to the study of peroxisome proliferator activated receptors (PPARs). The screening of compound to increase screening rates for synthetic and natural ligands of PPAR are reported. Pros and cons of the approaches in ligand discovery initiatives are discussed.


Assuntos
Cromatografia de Afinidade/métodos , Receptores Ativados por Proliferador de Peroxissomo/isolamento & purificação , Ligantes , Receptores Ativados por Proliferador de Peroxissomo/metabolismo
10.
Sci Rep ; 7(1): 5777, 2017 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-28720829

RESUMO

PPAR antagonists are ligands that bind their receptor with high affinity without transactivation activity. Recently, they have been demonstrated to maintain insulin-sensitizing and antidiabetic properties, and they serve as an alternative treatment for metabolic diseases. In this work, an affinity-based bioassay was found to be effective for selecting PPAR ligands from the dried extract of an African plant (Diospyros bipindensis). Among the ligands, we identified betulinic acid (BA), a compound already known for its anti-inflammatory, anti-tumour and antidiabetic properties, as a PPARγ and PPARα antagonist. Cell differentiation assays showed that BA inhibits adipogenesis and promotes osteogenesis; either down-regulates or does not affect the expression of a series of adipogenic markers; and up-regulates the expression of osteogenic markers. Moreover, BA increases basal glucose uptake in 3T3-L1 adipocytes. The crystal structure of the complex of BA with PPARγ sheds light, at the molecular level, on the mechanism by which BA antagonizes PPARγ, and indicates a unique binding mode of this antagonist type. The results of this study show that the natural compound BA could be an interesting and safe candidate for the treatment of type 2 diabetes and bone diseases.


Assuntos
Adipogenia/efeitos dos fármacos , Glucose/metabolismo , Osteogênese/efeitos dos fármacos , PPAR gama/antagonistas & inibidores , Triterpenos/farmacologia , Células 3T3-L1 , Adipócitos/citologia , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Animais , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/metabolismo , Anti-Inflamatórios não Esteroides/farmacologia , Linhagem Celular , Cristalografia por Raios X , Glucose/farmacocinética , Células Hep G2 , Humanos , Camundongos , Estrutura Molecular , PPAR gama/química , PPAR gama/metabolismo , Triterpenos Pentacíclicos , Extratos Vegetais/química , Extratos Vegetais/metabolismo , Extratos Vegetais/farmacologia , Triterpenos/química , Triterpenos/metabolismo , Ácido Betulínico
11.
Sci Rep ; 6: 34792, 2016 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-27708429

RESUMO

The peroxisome proliferator-activated receptors (PPARs) are nuclear receptors involved in the regulation of the metabolic homeostasis and therefore represent valuable therapeutic targets for the treatment of metabolic diseases. The development of more balanced drugs interacting with PPARs, devoid of the side-effects showed by the currently marketed PPARγ full agonists, is considered the major challenge for the pharmaceutical companies. Here we present a structure-based virtual screening approach that let us identify a novel PPAR pan-agonist with a very attractive activity profile and its crystal structure in the complex with PPARα and PPARγ, respectively. In PPARα this ligand occupies a new pocket whose filling is allowed by the ligand-induced switching of the F273 side chain from a closed to an open conformation. The comparison between this pocket and the corresponding cavity in PPARγ provides a rationale for the different activation of the ligand towards PPARα and PPARγ, suggesting a novel basis for ligand design.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Naftalenos/química , Naftalenos/farmacologia , PPAR alfa/química , PPAR alfa/metabolismo , Sítios de Ligação , Varredura Diferencial de Calorimetria , Cristalografia por Raios X , Células Hep G2 , Humanos , Ligantes , Simulação de Acoplamento Molecular , PPAR alfa/agonistas , PPAR gama/agonistas , PPAR gama/metabolismo , Conformação Proteica , Pirimidinas/farmacologia , Relação Estrutura-Atividade
12.
J Enzyme Inhib Med Chem ; 31(sup4): 25-37, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27556138

RESUMO

New catechol-containing chemical entities have been investigated as matrix metalloproteinase inhibitors as well as antioxidant molecules. The combination of the two properties could represent a useful feature due to the potential application in all the pathological processes characterized by increased proteolytic activity and radical oxygen species (ROS) production, such as inflammation and photoaging. A series of catechol-based molecules were synthesized and tested for both proteolytic and oxidative inhibitory activity, and the detailed binding mode was assessed by crystal structure determination of the complex between a catechol derivative and the matrix metalloproteinase-8. Surprisingly, X-ray structure reveals that the catechol oxygens do not coordinates the zinc atom.


Assuntos
Antioxidantes/farmacologia , Catecóis/farmacologia , Metaloproteinase 8 da Matriz/metabolismo , Inibidores de Metaloproteinases de Matriz/farmacologia , Antioxidantes/síntese química , Antioxidantes/química , Catecóis/síntese química , Catecóis/química , Relação Dose-Resposta a Droga , Humanos , Metaloproteinase 8 da Matriz/isolamento & purificação , Inibidores de Metaloproteinases de Matriz/síntese química , Inibidores de Metaloproteinases de Matriz/química , Modelos Moleculares , Estrutura Molecular , Relação Quantitativa Estrutura-Atividade , Espécies Reativas de Oxigênio/metabolismo
13.
Sci Rep ; 6: 27658, 2016 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-27283034

RESUMO

A series of saponins and sapogenins from Medicago species were tested for their ability to bind and activate the nuclear receptor PPARγ by SPR experiments and transactivation assay, respectively. The SPR analysis proved to be a very powerful and fast technique for screening a large number of compounds for their affinity to PPARγ and selecting the better candidates for further studies. Based on the obtained results, the sapogenin caulophyllogenin was proved to be a partial agonist towards PPARγ and the X-ray structure of its complex with PPARγ was also solved, in order to investigate the binding mode in the ligand binding domain of the nuclear receptor. This is the first known crystal structure of a sapogenin directly interacting with PPARγ. Another compound of the series, the echinocistic acid, showed antagonist activity towards PPARγ, a property that could be useful to inhibit the adipocyte differentiation which is a typical adverse effect of PPARγ agonists. This study confirms the interest on saponins and sapogenins as a valuable natural resource exploitable in the medical and food industry for ameliorating the metabolic syndrome.


Assuntos
Medicago/química , PPAR gama/metabolismo , Sapogeninas/química , Saponinas/química , Sítios de Ligação , Células Hep G2 , Humanos , PPAR gama/agonistas , PPAR gama/química , Ligação Proteica , Sapogeninas/farmacologia , Saponinas/farmacologia
14.
ChemMedChem ; 10(3): 555-65, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25641779

RESUMO

Metaglidasen is a fibrate-like drug reported as a selective modulator of peroxisome proliferator-activated receptor γ (PPARγ), able to lower plasma glucose levels in the absence of the side effects typically observed with thiazolidinedione antidiabetic agents in current use. Herein we report an improved synthesis of metaglidasen's metabolically active form halofenic acid (R)-2 and that of its enantiomer (S)-2. The activity of the two stereoisomers was carefully examined on PPARα and PPARγ subtypes. As expected, both showed partial agonist activity toward PPARγ; the investigation of PPARα activity, however, led to unexpected results. In particular, (S)-2 was found to act as a partial agonist, whereas (R)-2 behaved as an antagonist. X-ray crystallographic studies with PPARγ were carried out to gain more insight on the molecular-level interactions and to propose a binding mode. Given the adverse effects provoked by fibrate drugs on skeletal muscle function, we also investigated the capacity of (R)-2 and (S)-2 to block conductance of the skeletal muscle membrane chloride channel. The results showed a more beneficial profile for (R)-2, the activity of which on skeletal muscle function, however, should not be overlooked in the ongoing clinical trials studying its long-term effects.


Assuntos
Hipoglicemiantes/química , Hipoglicemiantes/farmacologia , Músculo Esquelético/efeitos dos fármacos , PPAR alfa/metabolismo , PPAR gama/metabolismo , Animais , Cristalografia por Raios X , Células Hep G2 , Humanos , Ligantes , Masculino , Simulação de Acoplamento Molecular , Músculo Esquelético/metabolismo , PPAR alfa/agonistas , PPAR alfa/antagonistas & inibidores , PPAR gama/agonistas , PPAR gama/antagonistas & inibidores , Ratos Wistar
15.
Acta Crystallogr D Biol Crystallogr ; 70(Pt 7): 1965-76, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25004973

RESUMO

The peroxisome proliferator-activated receptors (PPARs) are transcription factors that regulate glucose and lipid metabolism. The role of PPARs in several chronic diseases such as type 2 diabetes, obesity and atherosclerosis is well known and, for this reason, they are the targets of antidiabetic and hypolipidaemic drugs. In the last decade, some rare mutations in human PPARγ that might be associated with partial lipodystrophy, dyslipidaemia, insulin resistance and colon cancer have emerged. In particular, the F360L mutant of PPARγ (PPARγ2 residue 388), which is associated with familial partial lipodystrophy, significantly decreases basal transcriptional activity and impairs stimulation by synthetic ligands. To date, the structural reason for this defective behaviour is unclear. Therefore, the crystal structure of PPARγ F360L together with the partial agonist LT175 has been solved and the mutant has been characterized by circular-dichroism spectroscopy (CD) in order to compare its thermal stability with that of the wild-type receptor. The X-ray analysis showed that the mutation induces dramatic conformational changes in the C-terminal part of the receptor ligand-binding domain (LBD) owing to the loss of van der Waals interactions made by the Phe360 residue in the wild type and an important salt bridge made by Arg357, with consequent rearrangement of loop 11/12 and the activation function helix 12 (H12). The increased mobility of H12 makes the binding of co-activators in the hydrophobic cleft less efficient, thereby markedly lowering the transactivation activity. The spectroscopic analysis in solution and molecular-dynamics (MD) simulations provided results which were in agreement and consistent with the mutant conformational changes observed by X-ray analysis. Moreover, to evaluate the importance of the salt bridge made by Arg357, the crystal structure of the PPARγ R357A mutant in complex with the agonist rosiglitazone has been solved.


Assuntos
Lipodistrofia Parcial Familiar/genética , Mutação , PPAR gama/química , Ativação Transcricional , Cristalização , Humanos , Mutagênese Sítio-Dirigida , PPAR gama/genética
16.
J Biol Chem ; 289(10): 6908-6920, 2014 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-24451380

RESUMO

Peroxisome proliferator-activated receptors (PPARs) are ligand-dependent transcription factors regulating lipid and glucose metabolism. Ongoing drug discovery programs aim to develop dual PPARα/γ agonists devoid of the side effects of the marketed antidiabetic agents thiazolidinediones and the dual agonists glitazars. Recently, we described a new dual PPARα/γ ligand, LT175, with a partial agonist profile against PPARγ and interacting with a newly identified region of the PPARγ-ligand binding domain (1). Here we show that LT175 differentially activated PPARγ target genes involved in fatty acid esterification and storage in 3T3-L1-derived adipocytes. This resulted in a less severe lipid accumulation compared with that triggered by rosiglitazone, suggesting that LT175 may have a lower adipogenic activity. Consistent with this hypothesis, in vivo administration of LT175 to mice fed a high-fat diet decreased body weight, adipocyte size, and white adipose tissue mass, as assessed by magnetic resonance imaging. Furthermore, LT175 significantly reduced plasma glucose, insulin, non-esterified fatty acids, triglycerides, and cholesterol and increased circulating adiponectin and fibroblast growth factor 21 levels. Oral glucose and insulin tolerance tests showed that the compound improves glucose homeostasis and insulin sensitivity. Moreover, we demonstrate that the peculiar interaction of LT175 with PPARγ affected the recruitment of the coregulators cyclic-AMP response element-binding protein-binding protein and nuclear corepressor 1 (NCoR1), fundamentals for the PPARγ-mediated adipogenic program. In conclusion, our results describe a new PPAR ligand, modulating lipid and glucose metabolism with reduced adipogenic activity, that may be used as a model for a series of novel molecules with an improved pharmacological profile for the treatment of dyslipidemia and type 2 diabetes.


Assuntos
Adipogenia/efeitos dos fármacos , Compostos de Bifenilo/administração & dosagem , Hipoglicemiantes/farmacologia , Resistência à Insulina , Insulina/farmacologia , PPAR alfa/agonistas , PPAR gama/agonistas , Fenilpropionatos/administração & dosagem , Células 3T3-L1 , Animais , Compostos de Bifenilo/metabolismo , Glicemia/efeitos dos fármacos , Peso Corporal/efeitos dos fármacos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Dislipidemias/tratamento farmacológico , Glucose/metabolismo , Teste de Tolerância a Glucose , Hipoglicemiantes/metabolismo , Insulina/sangue , Ligantes , Metabolismo dos Lipídeos/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Correpressor 1 de Receptor Nuclear/metabolismo , PPAR alfa/metabolismo , PPAR gama/metabolismo , Fenilpropionatos/metabolismo
17.
Phys Chem Chem Phys ; 15(31): 13108-15, 2013 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-23824019

RESUMO

The plastoquinone (Q(B)) binding niche of the Photosystem II (PSII) D1 protein is the subject of intense research due to its capability to bind also anthropogenic pollutants. In this work, the Chlamydomonas reinhardtii D1 primary structure was used as a template to computationally design novel peptides enabling the binding of the herbicide atrazine. Three biomimetic molecules, containing the Q(B)-binding site in a loop shaped by two α-helices, were reconstituted by automated protein synthesis, and their structural and functional features deeply analysed by biophysical techniques. Standing out among the others, the biomimetic mutant peptide, D1pepMut, showed high ability to mimic the D1 protein in binding both Q(B) and atrazine. Circular dichroism spectra suggested a typical properly-folded α-helical structure, while isothermal titration calorimetry (ITC) provided a complete thermodynamic characterization of the molecular interaction. Atrazine binds to the D1pepMut with a high affinity (Kd = 2.84 µM), and a favourable enthalpic contribution (ΔH = -11.9 kcal mol(-1)) driving the interaction. Fluorescence spectroscopy assays, in parallel to ITC data, provided hyperbolic titration curves indicating the occurrence of a single atrazine binding site. The binding resulted in structural stabilisation of the D1pepMut molecule, as suggested by atrazine-induced cooperative profiles for the fold-unfold transition. The interaction dynamics and the structural stability of the peptides in response to the ligand were particularly considered as mandatory parameters for biosensor/biochip development. These studies paved the way to the set-up of an array of synthetic mutant peptides with a wide range of affinity towards different classes of target analytes, for the development of optical nanosensing platforms for herbicide detection.


Assuntos
Atrazina/química , Chlamydomonas reinhardtii/química , Peptídeos/química , Peptídeos/síntese química , Plastoquinona/química , Sítios de Ligação , Técnicas Biossensoriais
18.
Bioorg Med Chem ; 20(6): 2141-51, 2012 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-22341573

RESUMO

PPARs are transcription factors that govern lipid and glucose homeostasis and play a central role in cardiovascular disease, obesity, and diabetes. Thus, there is significant interest in developing new agonists for these receptors. Given that the introduction of fluorine generally has a profound effect on the physical and/or biological properties of the target molecule, we synthesized a series of fluorinated analogs of the previously reported compound 2, some of which turned out to be remarkable PPARα and PPARγ dual agonists. Docking experiments were also carried out to gain insight into the interactions of the most active derivatives with both receptors.


Assuntos
Ácidos Carboxílicos/química , Ácidos Carboxílicos/farmacologia , PPAR alfa/agonistas , PPAR gama/agonistas , Sítios de Ligação , Cristalografia por Raios X , Halogenação , Humanos , Modelos Moleculares , PPAR alfa/química , PPAR alfa/metabolismo , PPAR gama/química , PPAR gama/metabolismo , Ligação Proteica , Relação Estrutura-Atividade
19.
J Med Chem ; 53(11): 4354-66, 2010 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-20462215

RESUMO

Molecular dynamics simulations were performed on two ureidofibrate-like enantiomers to gain insight into their different potency and efficacy against PPARgamma. The partial agonism of the S enantiomer seems to be due to its capability to stabilize different regions of the receptor allowing the interaction with both coactivators and corepressors as shown by fluorescence resonance energy transfer (FRET) assays. The recruitment of the corepressor N-CoR1 by the S enantiomer on two different responsive elements of PPARgamma regulated promoters was confirmed by chromatin immunoprecipitation assays. Cell-based transcription assays show that PPARgamma coactivator 1alpha (PGC-1alpha) and cAMP response element binding protein-binding protein (CBP) enhance the basal and ligand-stimulated receptor activity acting as coactivators of PPARgamma, whereas the receptor interacting protein 140 (RIP140) and the nuclear corepressor 1 (N-CoR1) repress the transcriptional activity of PPARgamma. We also tested the importance of the residue Q286 on the transcriptional activity of the receptor by site-directed mutagenesis and confirmed its key role in the stabilization of helix 12. Molecular modeling studies were performed to provide a molecular explanation for the different behavior of the mutants.


Assuntos
Benzoxazóis/química , Benzoxazóis/metabolismo , Butiratos/química , Butiratos/metabolismo , Simulação de Dinâmica Molecular , Mutagênese Sítio-Dirigida , PPAR gama/química , PPAR gama/metabolismo , Benzoxazóis/farmacologia , Butiratos/farmacologia , Proteínas Correpressoras/metabolismo , Humanos , PPAR gama/genética , Regiões Promotoras Genéticas/genética , Ligação Proteica , Conformação Proteica , Rosiglitazona , Estereoisomerismo , Relação Estrutura-Atividade , Tiazolidinedionas/química , Tiazolidinedionas/metabolismo , Tiazolidinedionas/farmacologia
20.
J Med Chem ; 52(20): 6382-93, 2009 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-19775169

RESUMO

The preparation of a new series of 2-aryloxy-3-phenyl-propanoic acids, resulting from the introduction of a linker into the diphenyl system of the previously reported PPARalpha/gamma dual agonist 1, allowed the identification of new ligands with improved potency on PPARalpha and unchanged activity on PPARgamma. For the most interesting stereoisomers S-2 and S-4, X-ray studies in PPARgamma and docking experiments in PPARalpha provided a molecular explanation for their different behavior as full and partial agonists of PPARalpha and PPARgamma, respectively. Due to the adverse effects provoked by hypolipidemic drugs on skeletal muscle function, we also investigated the blocking activity of S-2 and S-4 on skeletal muscle membrane chloride channel conductance and found that these ligands have a pharmacological profile more beneficial compared to fibrates currently used in therapy.


Assuntos
Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/fisiologia , PPAR alfa/agonistas , PPAR gama/agonistas , Propionatos/efeitos adversos , Propionatos/farmacologia , Animais , Linhagem Celular Tumoral , Canais de Cloreto/metabolismo , Cloretos/metabolismo , Ácido Clofíbrico/efeitos adversos , Cristalografia por Raios X , Descoberta de Drogas , Condutividade Elétrica , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/efeitos adversos , Ligantes , Masculino , Modelos Moleculares , Conformação Molecular , Músculo Esquelético/metabolismo , Doenças Musculares/induzido quimicamente , PPAR alfa/química , PPAR alfa/metabolismo , PPAR gama/química , PPAR gama/metabolismo , Propionatos/química , Propionatos/metabolismo , Ratos , Ratos Wistar , Descanso , Estereoisomerismo , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...