Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Cell Biochem ; 120(9): 15057-15068, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31081178

RESUMO

Late diplotene oocytes are characterized by an essential decrease in transcriptional activity. At this time, chromosomes condense and form a compact structure named a karyosphere. The karyosphere of grass frogs Rana temporaria is surrounded by a fibrillar karyosphere capsule (KC). One of the main protein constituents of R. temporaria KC is actin. In this study, we used antibodies against different actin epitopes to trace different forms of actin in the KC. We also investigated the effect of F-actin depolymerization on the oocyte nuclear structures and transcription of chromatin DNA and rDNA in the amplified nucleoli. It was determined that disruption of actin filaments leads to chromosome shrinkage, nucleoli fusion, and distortion of the KC structure, but does not inhibit residual transcription in both the karyosphere and the nucleoli.


Assuntos
Citoesqueleto de Actina/fisiologia , Actinas/metabolismo , Nucléolo Celular/metabolismo , Oócitos/metabolismo , Transcrição Gênica/fisiologia , Actinas/imunologia , Animais , Cromatina/metabolismo , Cromossomos/metabolismo , Epitopos/imunologia , Feminino , Prófase Meiótica I/fisiologia , Rana temporaria
2.
Mol Cytogenet ; 9: 50, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27347007

RESUMO

BACKGROUND: During the final stages of oocyte development, all chromosomes join in a limited nuclear volume for the final formation of a single complex chromatin structure - the karyosphere. In the majority of mammalian species, the chromosomes surround a round protein/fibrillar body known as the central body, or nucleolus-like body (NLB). Nothing seems to unite the inner portion of the karyosphere with the nucleolus except position at its remnants. Nevertheless, in this study we will use term NLB as the conventional one for karyosphere with the central body. At the morphological level, NLBs consist of tightly-packed fibres of 6-10 nm. The biochemical structure of this dense, compact NLB fibre centre remains uncertain. RESULTS: The aim of this study was to determine which proteins represent the NLB components at final stages of karyosphere formation in mouse oogenesis. To determine this, three antibodies (ABs) have been examined against different actin epitopes. Examination of both ABs against the actin N-end provided similar results: spots inside the nucleus. Double staining with AB against SC35 and actin revealed the colocalization of these proteins in IGCs (interchromatin granule clusters/nuclear speckles/SC35 domains). In contrast, examination of polyclonal AB against peptide at the C-end reveals a different result: actin is localized exclusively in connection with the chromatin. Surprisingly, no forms of actin or topoisomerase II are present as components of the NLB. It was discovered that: (1) lamin B is an NLB component from the beginning of NLB formation, and a major portion of it resides in the NLB at the end of oocyte development; (2) lamin A undergoes rapid movement into the NLB, and a majority of it remains in the NLB; (3) the telomere-binding protein TRF2 resides in the IGCs/nuclear speckles until the end of oocyte development, when significant part of it transfers to the NLB. CONCLUSIONS: NLBs do not contain actin or topo II. Lamin B is involved from the beginning of NLB formation. Both Lamin A and TRF2 exhibit rapid movement to the NLB at the end of oogenesis. This dynamic distribution of proteins may reflect the NLB's role in future chromatin organization post-fertilisation.

3.
J Cell Biochem ; 89(4): 720-32, 2003 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-12858338

RESUMO

The intranuclear distribution of the transcription factor Oct-4, which is specifically expressed in totipotent mice stem and germ line cells, was studied in mouse oocytes using immunogold labeling/electron microscopy and immunofluorescence/confocal laser scanning microcopy. The localization of Oct-4 was studied in transcriptionally active (uni/bilaminar follicles) and inactive (antral follicles) oocytes. Additionally, the Oct-4 distribution was examined relative to that of the unphosphorylated form of RNA polymerase II (Pol II) and splicing factor (SC 35) in the intranuclear entities such as perichromatin fibrils (PFs), perichromatin granules (PGs), interchromatin granule clusters (IGCs), Cajal bodies (CBs), and nucleolus-like bodies (NLBs). It was shown that: (i) Oct-4 is localized in PFs, IGCs, and in the dense fibrillar component (DFC) of the nucleolus at the transcriptionally active stage of the oocyte nucleus; (ii) Oct-4 present in PFs and IGCs colocalizes with Pol II and SC 35 at the transcriptionally active stage; (iii) Oct-4 accumulates in NLBs, CBs, and PGs at the inert stage of the oocyte. The results confirm the previous suggestion that PFs represent the major nucleoplasmic structural domain involved in active pre-mRNA transcription/processing. The colocalization of Oct-4 with Pol II in both IGCs and PFs in active oocytes (uni/bilaminar follicles) suggests that Oct-4 is intimately associated with the Pol II holoenzyme before and during transcription. The colocalization of Oct-4, Pol II, and SC 35 with coilin-containing structures such as NLBs and CBs at the inert stage (antral follicles) suggests that the latter may represent storage sites for the transcription/splicing machinery during the decline of transcription.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas Nucleares/metabolismo , Oócitos/metabolismo , RNA Polimerase II/metabolismo , Ribonucleoproteínas , Fatores de Transcrição/metabolismo , Transcrição Gênica/fisiologia , Animais , Núcleo Celular/metabolismo , DNA Polimerase II/metabolismo , DNA Polimerase II/ultraestrutura , Feminino , Imunofluorescência , Camundongos , Camundongos Endogâmicos BALB C , Microscopia Confocal , Microscopia Imunoeletrônica/métodos , Fator 3 de Transcrição de Octâmero , Oócitos/ultraestrutura , Folículo Ovariano/citologia , Folículo Ovariano/metabolismo , Splicing de RNA , Fatores de Processamento de Serina-Arginina , Fator de Transcrição Sp1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...