Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Osteopath Med Prim Care ; 4: 4, 2010 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-20609258

RESUMO

BACKGROUND: A ubiquitous dilemma in medical education continues to be whether and how to integrate research competencies into the predoctoral curriculum. Understanding research concepts is imbedded in the six core competencies for physicians, but predoctoral medical education typically does not explicitly include research education. In an effort to quickly report academic research findings to the field, this is the second in a series of articles reporting the outcomes of a research education initiative at one college of osteopathic medicine. The first article described the competency model and reported baseline performance in applied understanding of targeted research concepts. This second article reports on the learning outcomes from the inaugural year of a course in basic biomedical research concepts. METHODS: This course consisted of 24 total hours of classroom lectures augmented with web-based materials using Blackboard Vista, faculty moderated student presentations of research articles, and quizzes. To measure changes in applied understanding of targeted research concepts in the inaugural year of the course, we administered a pretest and a posttest to second year students who took the course and to first year students who took an informatics course in the same academic year. RESULTS: We analyzed 154 matched pretests and posttests representing 56% of the 273 first and second year students. On average, the first year (53) and second year students (101) did not differ in their mean pretest scores. At posttest the second year students showed significant improvement in their applied understanding of the concepts, whereas the first year students' mean posttest score was lower than their mean pretest score. CONCLUSIONS: This biomedical research course appears to have increased the second year students' applied understanding of the targeted biomedical research concepts. This assessment of learning outcomes has facilitated the quality improvement process for the course, and improved our understanding of how to measure the benefits of research education for medical students. Some of the course content and methods, and the outcome measures may need to be approached differently in the future to more effectively lay the foundation for osteopathic medical students to utilize these concepts in the clinical setting.

2.
Osteopath Med Prim Care ; 3: 10, 2009 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-19825171

RESUMO

BACKGROUND: Without systematic exposure to biomedical research concepts or applications, osteopathic medical students may be generally under-prepared to efficiently consume and effectively apply research and evidence-based medicine information in patient care. The academic literature suggests that although medical residents are increasingly expected to conduct research in their post graduate training specialties, they generally have limited understanding of research concepts.With grant support from the National Center for Complementary and Alternative Medicine, and a grant from the Osteopathic Heritage Foundation, the University of North Texas Health Science Center (UNTHSC) is incorporating research education in the osteopathic medical school curriculum. The first phase of this research education project involved a baseline assessment of students' understanding of targeted research concepts. This paper reports the results of that assessment and discusses implications for research education during medical school. METHODS: Using a novel set of research competencies supported by the literature as needed for understanding research information, we created a questionnaire to measure students' confidence and understanding of selected research concepts. Three matriculating medical school classes completed the on-line questionnaire. Data were analyzed for differences between groups using analysis of variance and t-tests. Correlation coefficients were computed for the confidence and applied understanding measures. We performed a principle component factor analysis of the confidence items, and used multiple regression analyses to explore how confidence might be related to the applied understanding. RESULTS: Of 496 total incoming, first, and second year medical students, 354 (71.4%) completed the questionnaire. Incoming students expressed significantly more confidence than first or second year students (F = 7.198, df = 2, 351, P = 0.001) in their ability to understand the research concepts. Factor analyses of the confidence items yielded conceptually coherent groupings. Regression analysis confirmed a relationship between confidence and applied understanding referred to as knowledge. Confidence scores were important in explaining variability in knowledge scores of the respondents. CONCLUSION: Medical students with limited understanding of research concepts may struggle to understand the medical literature. Assessing medical students' confidence to understand and objectively measured ability to interpret basic research concepts can be used to incorporate competency based research material into the existing curriculum.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...