Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(16)2022 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-36012371

RESUMO

Palladium is a noble metal of the platinum group metals (PGMs) with a high value and major industrial applications. Due to the scarce palladium resources, researchers' attention is currently focused on Pd ions recovery from secondary sources. Regarding the recovery process from aqueous solutions, many methods were studied, amongst which adsorption process gained a special attention due to its clear advantages. Moreover, the efficiency and the selectivity of an adsorbent material can be further improved by functionalization of various solid supports. In this context, the present work aims at the synthesis and characterization of Mg3Al-LDH and its functionalization with ionic liquid (IL) (Methyltrialkylammonium chloride) to obtain adsorbent materials with high efficiency in Pd removal from aqueous solutions. The maximum adsorption capacity developed by Mg3Al-LDH is 142.9 mg Pd., and depending on the functionalization method used (sonication and co-synthesis, respectively) the maximum adsorption capacity increases considerably, qmax-Mg3Al IL-US = 227.3 mg/g and qmax-Mg3Al IL-COS = 277.8 mg/g.


Assuntos
Líquidos Iônicos , Poluentes Químicos da Água , Adsorção , Concentração de Íons de Hidrogênio , Hidróxidos , Cinética , Paládio , Soluções , Espectroscopia de Infravermelho com Transformada de Fourier , Água
2.
Molecules ; 26(23)2021 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-34885965

RESUMO

The present paper describes a new way of obtaining an efficient adsorbent material by functionalization of Mg3Al layered double hydroxides (LDH) with methyl trialkyl ammonium chloride-ionic liquid (IL) using two methods: ultrasound and cosynthesis. Layered double hydroxides are good solid support for the functionalization with ionic liquids due to their well-ordered structure. The immobilization of the ILs in suitable solid supports combine the advantages of the ILs with the properties of the solid supports bringing more benefits such as use of lower quantity of ILs and avoiding of ILs loss in the aqua phase which overall decrease the treatment costs. In case of ultrasound method of functionalization is assured a uniform distribution of IL on the solid surface, but through immobilization by cosynthesis due to the tunable properties of LDH, is assured an intercalation of the ILs between the LDH layers. This fact was highlighted by the X-ray diffraction (RXD), scanning electron microscopy (SEM) analyses and Fourier-transform infrared (FTIR) spectroscopy of the obtained adsorbent. The added value brought by the functionalization of Mg3Al with the studied IL was underlined by the adsorption studies conducted in the treatment process of water with diclofenac content. Kinetic, thermodynamic, and equilibrium studies were performed. DCF adsorption onto the studied materials correspond to a chemisorption, the pseudo-second-order kinetic model describing the most accurately the experimental data. DCF adsorption onto the studied materials occurs as a heterogeneous process, with the experimental data fitting best with the SIPS isotherm. The sample obtained through cosynthesis developed a maximum adsorption capacity of 648 mg/g.

3.
Molecules ; 25(11)2020 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-32486401

RESUMO

Incineration of sewage sludge produces every year huge amounts of sewage sludge ash. Due to its porosity and composition, sewage sludge ash can be used as an adsorbent for heavy metal ions removal. The present paper discusses the efficiency and feasibility of its use as an adsorbent for Pb (II) and Cu (II) removal in single and binary systems. Sewage sludge ash dosage, pH influence, equilibrium and kinetic studies were examined. The results show that sewage sludge ash is an effective and environmentally friendly adsorbent. The maximum adsorption capacity was 25.0 mg/g for Pb (II) and 7.5 mg/g for Cu (II). The presence of the competitive metal led to lower adsorption rate. The study concludes that sewage sludge ash is a promising adsorbent for Pb (II) and Cu (II) removal from wastewater presenting both economic and environmental benefits.


Assuntos
Cobre/química , Chumbo/química , Esgotos , Purificação da Água/métodos , Adsorção , Concentração de Íons de Hidrogênio , Íons , Cinética , Metais Pesados , Microscopia Eletrônica de Varredura , Águas Residuárias , Poluentes Químicos da Água/análise , Difração de Raios X
4.
Sensors (Basel) ; 15(6): 14526-38, 2015 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-26102487

RESUMO

This work reported new voltammetric/amperometric-based protocols using a commercial boron-doped diamond (BDD) electrode for simple and fast simultaneous detection of sulfide and nitrite from water. Square-wave voltammetry operated under the optimized working conditions of 0.01 V step potential, 0.5 V modulation amplitude and 10 Hz frequency allowed achieving the best electroanalytical parameters for the simultaneous detection of nitrite and sulfide. For practical in-field detection applications, the multiple-pulsed amperometry technique was operated under optimized conditions, i.e., -0.5 V/SCE for a duration of 0.3 s as conditioning step, +0.85 V/SCE for a duration of 3 s that assure the sulfide oxidation and +1.25 V/SCE for a duration of 0.3 s, where the nitrite oxidation occurred, which allowed the simultaneously detection of sulfide and nitrite without interference between them. Good accuracy was found for this protocol in comparison with standardized methods for each anion. Also, no interference effect was found for the cation and anion species, which are common in the water matrix.

5.
Sensors (Basel) ; 13(6): 7296-307, 2013 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-23736851

RESUMO

The present paper aims to miniaturize a graphite-epoxy and synthetic zeolite-modified graphite-epoxy composite macroelectrode as a quasi-microelectrode aiming in vitro and also, envisaging in vivo simultaneous electrochemical detection of dopamine (DA) and ascorbic acid (AA) neurotransmitters, or DA detection in the presence of AA. The electrochemical behavior and the response of the designed materials to the presence of dopamine and ascorbic acid without any protective membranes were studied by cyclic voltammetry and constant-potential amperometry techniques. The catalytic effect towards dopamine detection was proved for the synthetic zeolite-modified graphite-epoxy composite quasi-microelectrode, allowing increasing the sensitivity and selectivity for this analyte detection, besides a possible electrostatic attraction between dopamine cation and the negative surface of the synthetic zeolite and electrostatic repulsion with ascorbic acid anion. Also, the synthetic zeolite-modified graphite-epoxy composite quasi-microelectrode gave the best electroanalytical parameters for dopamine detection using constant-potential amperometry, the most useful technique for practical applications.


Assuntos
Ácido Ascórbico/análise , Dopamina/análise , Técnicas Eletroquímicas , Compostos de Epóxi/química , Grafite/química , Zeolitas/química , Microeletrodos
6.
Talanta ; 83(1): 66-71, 2010 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-21035645

RESUMO

In this work a new electrochemical sensor based on an Ag-doped zeolite-expanded graphite-epoxy composite electrode (AgZEGE) was evaluated as a novel alternative for the simultaneous quantitative determination of nitrate and nitrite in aqueous solutions. Cyclic voltammetry was used to characterize the electrochemical behavior of the electrode in the presence of individual or mixtures of nitrate and nitrite anions in 0.1M Na(2)SO(4) supporting electrolyte. Linear dependences of current versus nitrate and nitrite concentrations were obtained for the concentration ranges of 1-10mM for nitrate and 0.1-1mM for nitrite using cyclic voltammetry (CV), chronoamperometry (CA), and multiple-pulsed amperometry (MPA) procedures. The comparative assessment of the electrochemical behavior of the individual anions and mixtures of anions on this modified electrode allowed determining the working conditions for the simultaneous detection of the nitrite and nitrate anions. Applying MPA allowed enhancement of the sensitivity for direct and indirect nitrate detection and also for nitrite detection. The proposed sensor was applied in tap water samples spiked with known nitrate and nitrite concentrations and the results were in agreement with those obtained by a comparative spectrophotometric method. This work demonstrates that using multiple-pulse amperometry with the Ag-doped zeolite-expanded graphite-epoxy composite electrode provides a real opportunity for the simultaneous detection of nitrite and nitrate in aqueous solutions.


Assuntos
Eletroquímica/métodos , Nitratos/análise , Nitritos/análise , Eletrodos , Compostos de Epóxi/química , Grafite/química , Sensibilidade e Especificidade , Prata/química , Zeolitas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...