Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Plant Physiol Biochem ; 162: 483-495, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33756354

RESUMO

The pursuit of firmer and better-quality blueberries is a continuous task that aims at a more profitable production. To this end it is essential to understand the biological processes linked to fruit firmness, which may diverge among tissues. By contrasting varieties with opposing firmness, we were able to elucidate events that, taking place at immature stage, lay the foundation to produce a firmer ripe fruit. A deep analysis of blueberry skin was carried out, involving diverse comparative approaches including proteomics and metabolomics coupled to immunolocalization assays. In'O'Neal' (low firmness) enhanced levels of aquaporins, expansins and pectin esterases at the green stage were found to be critical in distinguishing it from 'Emerald' (high firmness). The latter featured higher levels of ABA, low methyl esterified pectins in tricellular junctions and high levels of catechin at this stage. Meanwhile, in 'Emerald' 's ripe fruit epicarp, several mechanisms of cell wall reinforcement such as calcium and probably boron bridges, appear to be more prominent than in 'O'Neal'. This study highlights the importance of cell wall reorganization and structure, abundance of specific metabolites, water status, and hormonal signalling in connection to fruit firmness. These findings result particularly valuable in order to improve the fertilization procedures or in the search of molecular markers related with firmness.


Assuntos
Mirtilos Azuis (Planta) , Parede Celular , Frutas , Íons , Pectinas
2.
Plant Physiol Biochem ; 136: 230-244, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30708258

RESUMO

Quality maintenance in rapidly decaying fruit such as blueberries (Vaccinium corymbosum) is of essential importance to guarantee the economic success of the crop. Fruit quality is a multifaceted subject that encompasses flavor, aroma, visual and physical issues as main factors. In this paper we report an ample characterization of different biochemical and physical aspects in two varieties (O'Neal and Emerald) of blueberries that differ in firmness, aspect, flavor and harvesting times, at two different phenological stages (fruit set vs. ripe), with the intention of unveiling how the metabolic signature of each contributes to their contrasting quality. To this effect a metabolomic, ionomic and proteomic approach was selected. The results presented here show marked differences in several variables at the two stages and between varieties. Emerald is an early variety with a large, good taste and firm fruit, while O'Neal is soft, medium sized and very sweet. Proteomic data comparison between both cultivars showed that, at fruit set, processes related with the response to inorganic compounds and small molecule metabolisms are relevant in both varieties. However, solute accumulation (mainly amino acids and organic acids), enzymes related with C: N balance, water transport and cell wall recycling are enhanced in Emerald. In ripe fruit, Emerald showed an enrichment of proteins associated with TCA, nitrogen, small molecules and cell wall in muro recycling processes, while mannitol and fatty acid metabolism were enhanced in the soft variety. The measured variation in metabolite levels gave strong support to the precedent results. This study suggests that at fruit set, a composite scenario of active metabolic recycling of the cell wall, improved C: N balance and solute accumulation give place to a more efficient carbon and water resource management. During the ripe stage, an increased and efficient in muro and metabolic recycling of the cell wall, added to enhanced inositol and secondary metabolism may be responsible for a best turgor conservation in Emerald. These findings may yield clues for improvements in fertilization practices, as well as to assist the guided development of new varieties based on biochemical quality.


Assuntos
Mirtilos Azuis (Planta)/metabolismo , Metabolismo dos Carboidratos , Parede Celular/metabolismo , Frutas/metabolismo , Ácidos Graxos/metabolismo , Metabolômica , Fenóis/metabolismo , Proteínas de Plantas/metabolismo , Proteômica , Característica Quantitativa Herdável
3.
Plant Physiol ; 113(3): 779-786, 1997 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12223643

RESUMO

Pyrphosphate-dependent phosphofructokinase (PFP) was purified to electrophoretic homogeneity from illuminated pineapple (Ananas comosus) leaves. The purified enzyme consists of a single subunit of 61.5 kD that is immunologically related to the potato tuber PFP [beta] subunit. The native form of PFP likely consists of a homodimer of 97.2 kD, as determined by gel filtration. PFP's glycolytic activity was strongly dependent on pH, displaying a maximum at pH 7.7 to 7.9. Gluconeogenic activity was relatively constant between pH 6.7 and 8.7. Activation by Fru-2,6-bisphosphate (Fru-2,6-P2) was dependent on assay pH. In the glycolytic direction, it activated about 10-fold at pH 6.7, but only 2-fold at pH 7.7. The gluconeogenic reaction was only weakly affected by Fru-2,6-P2. The true substrates for the PFP forward and reverse reactions were Fru-6-phosphate and Mg-pyrophosphate, and Fru-1,6-P2, orthophosphate, and Mg2+, respectively. The results suggest that pineapple PFP displays regulatory properties consistent with a pH-based regulation of its glycolytic activity, in which a decrease in cytosolic pH caused by nocturnal acidification during Crassulacean acid metabolism, which could curtail its activity, is compensated by a parallel increase in its sensitivity to Fru-2,6-P2. It is also evident that the [beta] subunit alone is sufficient to confer PFP with a high catalytic rate and the regulatory properties associated with activation by Fru-2,6-P2.

4.
Arch Biochem Biophys ; 313(1): 50-7, 1994 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-8053686

RESUMO

The effect of dilution of homogeneous potato tuber pyrophosphate:fructose-6-phosphate 1-phosphotransferase (EC 2.7.1.90; PFP) on the enzyme's intrinsic fluorescence, activity, and oligomeric structure has been examined. A rapid decrease in PFP's intrinsic fluorescence occurred in response to dilution. The decay follows double-exponential kinetics and was accompanied by a reduction in catalytic activity (measured in the glycolytic direction). Gel filtration-HPLC indicated a concomitant deaggregation of the native alpha 4 beta 4 heterooctamer into the inactive free alpha- and beta-subunits, followed by random aggregation of the subunits into an inactive, high M(r) conglomerate. The addition of 2 mM dithiothreitol, 2 mM 2-mercaptoethanol, or 5% (w/v) polyethylene glycol, but not any of the substrates, Mg2+, or fructose 2,6-bisphosphate, prevented this process. When purified PFP was stored for 1 week at -20 degrees C in the presence of 50% (v/v) glycerol partial degradation of its alpha-subunit occurred. This resulted in a labile enzyme that was more susceptible to subunit dissociation. The intrinsic fluorescence of the degraded PFP could be stabilized by 5% (w/v) polyethylene glycol, but not by 2 mM dithiothreitol or 2-mercaptoethanol. It is proposed that the current assay procedures for PFP, which normally involve considerable dilution in the absence of added sulfhydryl reducing agents or polyhydroxy compounds, may underestimate the actual activity of the enzyme. This has important implications for the assessment of the functions and regulation of PFP in vivo.


Assuntos
Fosfofrutoquinase-1/química , Solanum tuberosum/enzimologia , Álcoois/farmacologia , Difosfatos/metabolismo , Fluorescência , Cinética , Substâncias Macromoleculares , Fosfofrutoquinase-1/metabolismo , Conformação Proteica , Soluções , Espectrometria de Fluorescência , Compostos de Sulfidrila/farmacologia , Triptofano/química
5.
Plant Physiol ; 103(1): 285-288, 1993 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12231936

RESUMO

Homogeneous cytosolic pyruvate kinase from endosperm of germinating castor oil (Ricinus communis L. cv Hale) seeds was potently activated by polyethylene glycol. The addition of 5% (w/v) polyethylene glycol to the pyruvate kinase reaction mixture caused a 2.6-fold increase in maximal velocity and 12.5- and 2-fold reductions in Km values for phosphoenolpyruvate and ADP, respectively. Glycerol, ethylene glycol, and bovine serum albumin also enhanced pyruvate kinase activity, albeit to a lesser extent than polyethylene glycol. The addition of 5% (w/v) polyethylene glycol to the elution buffer during high-performance gel filtration chromatography of purified cytosolic pyruvate kinase helped to stabilize the active heterotetrameric native structure of the enzyme. A higher degree of inhibition by MgATP, but lower sensitivity to the inhibitors 3-phosphoglycerate and fructose- 1,6-bisphosphate, was also observed in the presence of 5% (w/v) polyethylene glycol. It is concluded that (a) plant cytosolic pyruvate kinase activity and regulation, like that of other regulatory pyruvate kinases, is modified by extreme dilution in the assay medium, probably as a result of deaggregation of the native tetrameric enzyme, and (b) ATP is probably the major metabolic effector of germinating castor endosperm cytosolic pyruvate kinase in vivo.

6.
Photosynth Res ; 35(3): 205-11, 1993 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24318750

RESUMO

Inorganic phosphate participates in many fundamental processes within the plant cell. Its broad influence on plant metabolism is related to such key operations as metabolite transport, enzyme regulation and carbohydrate metabolism in general. This review discusses these topics with special emphasis on the role assigned to this ubiquitous anion within the C4 pathway of photosynthesis.

7.
Biochim Biophys Acta ; 1160(2): 213-20, 1992 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-1445948

RESUMO

The kinetic properties of cytosolic pyruvate kinase (PKc) from germinating castor oil seeds (COS) have been investigated. From experiments in which the free Mg2+ concentration was varied at constant levels of either the complexed or free forms of the substrates it was determined that the true substrates are the free forms of both phosphoenolpyruvate (PEP) and ADP. This conclusion is corroborated by the quenching of intrinsic PKC tryptophan fluorescence by free PEP and ADP. Mg2+ is bound as the free bivalent cation but is likely released as MgATP. The fluorescence data, substrate interaction kinetics, and pattern of inhibition by products and substrate analogues (adenosine 5'-O-(2-thiodiphosphate) for ADP and phenyl phosphate for PEP) are compatible with a sequential, compulsory-ordered, Tri-Bi type kinetic reaction mechanism. PEP is the leading substrate, and pyruvate the last product to abandon the enzyme. The dissociation constant and limiting Km for free PEP (8.2 to 22 and 38 microM, respectively) and the limiting Km for free ADP (2.9 microM) are considerably lower than those reported for the non-plant enzyme. The results indicate that COS PKc exists naturally in an activated state, similar to the fructose 1,6-bisphosphate-activated yeast enzyme. This deduction is consistent with a previous study (F.E. Podestá and W.C. Plaxton (1991) Biochem. J. 279, 495-501) that failed to identify any allosteric activators for the COS PKc, but which proposed a regulatory mechanism based upon ATP levels and pH-dependent alterations in the enzyme's response to various metabolite inhibitors. As plant phosphofructokinases display potent inhibition by PEP, the overall rate of glycolytic flux from hexose 6-phosphate to pyruvate in the plant cytosol will ultimately depend upon variations in PEP levels brought about by the regulation of PKc.


Assuntos
Citosol/enzimologia , Plantas/enzimologia , Piruvato Quinase/química , Glicólise , Cinética , Sementes/enzimologia
8.
Plant Physiol ; 97(4): 1329-33, 1991 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16668551

RESUMO

The procedure of Malhotra and Kayastha ([1990] Plant Physiology 93: 194-200) for the purification to homogeneity of a phosphoenolpyruvate-specific alkaline phosphatase (PEP phosphatase) from germinating mung beans (Vigna radiata) was followed. Although a higher specific activity of 1.4 micromoles pyruvate produced per minute per milligram protein was obtained, the final preparation was less than 10% pure as judged by polyacrylamide gel electrophoresis. Attempts to further purify the enzyme resulted in loss of activity. The partially purified enzyme contained significant pyruvate kinase activity (0.13 micromole pyruvate produced per minute per milligram protein) when assayed at pH 7.2, but not at pH 8.5. The PEP phosphatase activity of the final preparation exhibited hysteresis; a lag time of 5 to 6 minutes was required before a steady-state reaction rate was attained. A western blot of the final preparation revealed an immunoreactive 57 kilodalton polypeptide when probed with monospecific rabbit polyclonal antibodies prepared against germinating castor bean cytosolic pyruvate kinase. No antigenic cross-reaction of the final preparation was observed with antibodies against castor bean leucoplast pyruvate kinase, or black mustard PEP-specific acid phosphatase. Nondenaturing polyacrylamide gel electrophoresis of the final preparation resulted in a single PEP phosphatase activity band; when this band was excised and subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis and western blotting, a 57 kilodalton silver-staining polypeptide was obtained that strongly cross-reacted with the anti-(cytosolic pyruvate kinase) immunoglobulin G. It is suggested that mung bean PEP-specific alkaline phosphatase activity is due to cytosolic pyruvate kinase, in which pyruvate and ortho-phosphate are formed in the absence of ADP.

9.
Biochem J ; 279 ( Pt 2): 495-501, 1991 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-1953644

RESUMO

The kinetic and regulatory properties of cytosolic pyruvate kinase (PKc) isolated from endosperm of germinating castor oil seeds (Ricinus communis L.) have been studied. Optimal efficiency in substrate utilization (in terms of Vmax/Km for phosphoenolpyruvate or ADP) occurred between pH 6.7 and 7.4. Enzyme activity was absolutely dependent on the presence of a bivalent and a univalent metal cation, with Mg2+ and K+ fulfilling this requirement. Mg2+ binding showed positive and negative co-operativity at pH 6.5 (h = 1.6) and pH 7.2 (h = 0.69) respectively. Hyperbolic saturation kinetics were observed with phosphoenolpyruvate (PEP) and K+, whereas ADP acted as a mixed-type inhibitor over 1 mM. Glycerol (10%, v/v) increased the S0.5(ADP) 2.3-fold and altered the pattern of nucleotide binding from hyperbolic (h = 1.0) to sigmoidal (h = 1.79) without modifying PEP saturation kinetics. No activators were identified. ATP, AMP, isocitrate, 2-oxoglutarate, malate, 2-phosphoglycerate, 2,3-bisphosphoglycerate, 3-phosphoglycerate, glycerol 3-phosphate and phosphoglycolate were the most effective inhibitors. These metabolites yielded additive inhibition when tested in pairs. ATP and 3-phosphoglycerate were mixed-type inhibitors with respect to PEP, whereas competitive inhibition was observed for other inhibitors. Inhibition by malate, 2-oxoglutarate, phosphorylated triose sugars or phosphoglycolate was far more pronounced at pH 7.2 than at pH 6.5. Although 32P-labelling studies revealed that extensive phosphorylation in vivo of soluble endosperm proteins occurred between days 3 and 5 of seed germination, no alteration in the 32P-labelling pattern of 5-day-germinated endosperm was observed after 30 min of anaerobiosis. Moreover, no evidence was obtained that PKc was a phosphoprotein in aerobic or anoxic endosperms. It is proposed that endosperm PKc activity of germinating castor seeds is enhanced after anaerobiosis through concerted decreases in ATP levels, cytosolic pH and concentrations of several key inhibitors.


Assuntos
Plantas Tóxicas , Piruvato Quinase/metabolismo , Ricinus communis/enzimologia , Sementes/enzimologia , Difosfato de Adenosina/farmacologia , Aerobiose , Cátions , Citosol/enzimologia , Glicólise , Concentração de Íons de Hidrogênio , Cinética , Magnésio/farmacologia , Fosfoenolpiruvato/metabolismo , Fosforilação , Potássio/farmacologia , Piruvato Quinase/antagonistas & inibidores , Temperatura
10.
Biochim Biophys Acta ; 1041(3): 291-5, 1990 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-2268676

RESUMO

An active-site peptide from maize (Zea mays L.) phosphoenolpyruvate carboxylase has been isolated, sequenced and identified in the primary structure following chemical modification/inactivation of the enzyme by pyridoxal 5'-phosphate and reduction with sodium borohydride. The amino acid sequence of the purified dodecapeptide is Val-Gly-Tyr-Ser-Asp-Ser-Gly-L*ys-Asp-Ala-Gly-Arg, which corresponds exactly to residues 599-610 in the deduced primary sequence of the maize-leaf enzyme. Comparative analysis of the deduced amino acid sequences of the enzyme from Escherichia coli, Anacystis nidulans and C3, C4 and Crassulacean acid metabolism plants indicates that they all contain this specific lysyl group, as well as a high degree of sequence homology flanking this species-invariant residue. This observation suggests a critical role for Lys-606 during catalysis by maize phosphoenolpyruvate carboxylase. This represents the first identification of a specific, species-invariant active-site residue in the enzyme.


Assuntos
Fosfoenolpiruvato Carboxilase/metabolismo , Fosfato de Piridoxal/farmacologia , Zea mays/enzimologia , Sequência de Aminoácidos , Sítios de Ligação , Cromatografia Líquida de Alta Pressão , Dados de Sequência Molecular , Oligopeptídeos/química , Fosfoenolpiruvato Carboxilase/antagonistas & inibidores , Fosfoenolpiruvato Carboxilase/química , Homologia de Sequência do Ácido Nucleico
11.
Photosynth Res ; 26(3): 161-70, 1990 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24420581

RESUMO

This review deals with the factors controlling the aggregation-state of several enzymes involved in C4 photosynthesis, namely phosphoenolpyruvate carboxylase, NAD-and NADP-malic enzyme, NADP-malic dehydrogenase and pyruvate, phosphate dikinase and its regulatory protein. All of these enzymes are oligomeric and have been shown to undergo changes in their quaternary structure in vitro under different conditions. The activity changes linked to variations in aggregation-state are discussed in terms of their putative physiological role in the regulation of C4 metabolism.

12.
Plant Physiol ; 90(2): 427-33, 1989 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16666788

RESUMO

Maize (Zea mays L.) leaf phosphoenopyruvate (PEP) carboxylase activity at subsaturating levels of PEP was increased by the inclusion of glycerol (20%, v/v) in the assay medium. The extent of activation was dependent on H(+) concentration, being more marked at pH 7 (with activities 100% higher than in aqueous medium) than at pH 8 (20% activation). The determination of the substrate concentration necessary to achieve half-maximal enzyme activity (S(0.5)) (PEP) and maximal velocity (V) between pH 6.9 and 8.2 showed a uniform decrease in S(0.5) in the presence of glycerol over the entire pH range tested, and only a slight decrease in V at pH values near 8. Including NaCl (100 millimolar) in the glycerol containing assay medium resulted in additional activation, mainly due to an increase in V over the entire range of pH. Glucose-6-phosphate (5 millimolar) activated both the native and the glycerol-treated enzyme almost to the same extent, at pH 7 and 1 millimolar PEP. Inhibition by 5 millimolar malate at pH 7 and subsaturating PEP was considerably lower in the presence of glycerol than in an aqueous medium (8% against 25%, respectively). Size-exclusion high performance liquid chromatography in aqueous buffer revealed the existence of an equilibrium between the tetrameric and dimeric enzyme forms, which is displaced to the tetramer as the pH was increased from 7 to 8. In the presence of glycerol, only the 400 kilodalton tetrameric form was observed at pH 7 or 8. However, dissociation into dimers by NaCl could not be prevented by the polyol. We conclude that the control of the aggregation state by the metabolic status of the cell could be one regulatory mechanism of PEP carboxylase.

13.
Eur J Biochem ; 173(3): 561-8, 1988 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-2453360

RESUMO

Phosphoenolpyruvate carboxylase, purified from maize leaves, is rapidly inactivated by the fluorescence probe dansyl chloride. The loss of activity can be ascribed to the covalent modification of an R-NH2 group, presumably the epsilon-NH2 group of lysine. Analysis of the data by the statistical method of Tsou [Sci. Sin. 11, 1535-1558 (1962)] provides clear evidence that a pH 8 eight R-NH2 groups can be modified in the tetrameric form of the enzyme, four of which are essential for catalytic activity. Essential groups are modified about five times more rapidly than the non-essential ones. The enzyme was completely protected against inactivation by Mg2+ plus phosphoenolpyruvate and consequently binding of the modifier to the essential groups is completely abolished. Hence the four essential groups seemed to be located at or near the active site(s). One of the four essential groups was modified with dansyl chloride and the other three progressively with eosin isothiocyanate. In the doubly labeled protein non-radiative single-singlet energy transfer between dansyl chloride (donor) and eosin isothiocyanate (acceptor) was observed. The low variance (+/- 5%) in the efficiency of energy transfer obtained at a particular acceptor stoichiometry (0.8-1.1, 1.9-2.1, 2.9-3.1) in triplicate samples provided confidence that the measured transfer efficiency may be interpreted as transfer between specific sites. The distances calculated from the efficiency of resonance energy transfer revealed two acceptor sites, equally separated, 4.8-5.1 nm from the donor site and third site being 6.4 nm apart from the donor. Under conditions where the tetrameric enzyme dissociates into the monomers, no transfer of resonance energy between the protein-bound dansyl chloride and eosin isothiocyanate was observed. Most likely the four essential lysyl residues in the tetrameric enzyme are located in different subunits of the enzyme, hence each of the subunits would contain a substrate-binding site with one lysyl residue crucial for activity.


Assuntos
Carboxiliases/antagonistas & inibidores , Lisina/análise , Fosfoenolpiruvato Carboxilase/antagonistas & inibidores , Marcadores de Afinidade , Sítios de Ligação , Catálise , Compostos de Dansil/farmacologia , Transferência de Energia , Amarelo de Eosina-(YS)/análogos & derivados , Amarelo de Eosina-(YS)/farmacologia , Concentração de Íons de Hidrogênio , Lisina/fisiologia , Espectroscopia de Ressonância Magnética , Matemática , Espectrometria de Fluorescência , Zea mays/enzimologia
14.
Eur J Biochem ; 164(3): 661-6, 1987 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-3569281

RESUMO

Phosphoenolpyruvate carboxylase from maize leaves dissociated into dimers and/or monomers when exposed to increasing ionic strength (e.g. 200-400 mM NaCl) as indicated by gel filtration experiments. Changes in the oligomerization state were dependent on pH, time of preincubation with salt and protein concentration. A dissociation into dimers and monomers was observed at pH 8, while at pH 7 dissociation into the dimeric form only was observed. Exposure of the enzyme to higher ionic strength decreased the activity in a time-dependent manner. Turnover conditions and glucose 6-phosphate protected the carboxylase from the decay in activity, which was faster at pH 7 than at pH 8. The results suggest that changes in activity of the enzyme, following exposure to high ionic strength, are the consequence of dissociation. Tetrameric and dimeric forms of the phosphoenolpyruvate carboxylase seemingly reveal different catalytic properties. We suggest that the distinct catalytic properties of the different oligomeric species of phosphoenolpyruvate carboxylase and changes in the equilibrium between them could be the molecular basis for an effective regulation of metabolite levels by this key enzyme of C4 plants.


Assuntos
Carboxiliases/antagonistas & inibidores , Fosfoenolpiruvato Carboxilase/antagonistas & inibidores , Catálise , Cromatografia em Gel , Cromatografia Líquida de Alta Pressão , Glucose-6-Fosfato , Glucofosfatos/farmacologia , Concentração de Íons de Hidrogênio , Substâncias Macromoleculares , Concentração Osmolar , Cloreto de Sódio/farmacologia , Zea mays/enzimologia
15.
Arch Biochem Biophys ; 246(2): 546-53, 1986 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-3085590

RESUMO

Phosphoenolpyruvate carboxylase from maize leaves was inactivated by pyridoxal 5'-phosphate in the dark and in the light. A two-step reversible mechanism is proposed for inactivation in the dark, which involves the formation of a noncovalent complex prior to a Schiff base with amino groups of the enzyme. Spectral analysis of pyridoxal 5'-phosphate-modified phosphoenolpyruvate carboxylase showed absorption maxima at 432 and 327 nm, before and after reduction with NaBH4, respectively, suggesting that epsilon-amino groups of lysine residues are the reactive groups in the enzyme. A correlation between spectral data and the maximal inactivation obtained with several concentrations of inhibitor allowed us to establish that the incorporation of 4 mol of pyridoxal 5'-phosphate per mole of holoenzyme accounts for total inactivation. The absence of modifier bound to phosphoenolpyruvate carboxylase when the modification was carried out in the presence of phosphoenolpyruvate and MgCl2 suggests the existence of an essential lysine residue at the catalytic site of the enzyme. Modification of phosphoenolpyruvate carboxylase in the light under an oxygen atmosphere resulted in an irreversible inactivation, which was completely protected by phosphoenolpyruvate and MgCl2. Spectral analysis of the photomodified enzyme showed an absorption peak of 320 nm, suggesting light-mediated addition of a nucleophilic residue (probably an imidazole group) to the pyridoxal 5'-phosphate-lysine azomethine bond.


Assuntos
Carboxiliases/antagonistas & inibidores , Lisina/metabolismo , Fosfoenolpiruvato Carboxilase/antagonistas & inibidores , Fosfato de Piridoxal/farmacologia , Zea mays/enzimologia , Sítios de Ligação , Catálise , Modelos Químicos , Oxirredução , Fosfoenolpiruvato Carboxilase/efeitos da radiação , Fotoquímica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...