Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(19)2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37834752

RESUMO

Laser texturing with a dimple pattern was applied to modify a Ti6Al4V alloy at the micro level, aiming to improve its friction and wear resistance in combination with oil lubrication to optimize the performance in demanding industrial environments. The tribological analysis was performed on four different dimple-textured surfaces with varying dimple size and dimple-to-dimple distance and under lubrication with three different oils, i.e., T9, VG46, and VG100, to reflect the oil viscosity's influence on the friction/wear of the laser-textured Ti6Al4V alloy. The results show that the surfaces with the highest texture density showed the most significant COF reduction of around 10% in a low-viscosity oil (T9). However, in high-viscosity oils (VG46 and VG100), the influence of the laser texturing on the COF was less pronounced. A wear analysis revealed that the laser texturing intensified the abrasive wear, especially on surfaces with a higher texture density. For low-texturing-density surfaces, less wear was observed for low- and medium-viscosity oils (T9 and VG46). For medium-to-high-texturing densities, the high-viscosity oil (VG100) provided the best contact conditions and wear results. Overall, reduced wear, even below the non-texturing case, was observed for sample 50-200 in VG100 lubrication, indicating the combined effect of oil reservoirs and increased oil-film thickness within the dimples due to the high viscosity.

2.
Materials (Basel) ; 16(17)2023 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-37687537

RESUMO

In the present work, the functionalisation of austenitic stainless steel, AISI 316L surfaces via nanosecond Nd:YAG laser texturing in order to modify the surface morphology with crosshatch and dimple patterns is presented. A tribological analysis under lubrication with sunflower and jojoba oil with and without the addition of a solid lubricant, MoS2 nanotubes, was performed. In conjunction with friction/wear response laser-textured surface wettability, oil spreadability and oil retention capacity were also analysed. It was shown that the crosshatch pattern generally exhibited lower friction than the dimple pattern, with the addition of MoS2 nanotubes not having any significant effect on the coefficient of friction under the investigated contact conditions. This was found in addition to the better oil spreadability and oil retention capacity results of the crosshatch-textured surface. Furthermore, texturing reduced the wear of the stainless-steel surfaces but led to an approximately one order of magnitude larger wear rate of the steel counter-body, primarily due to the presence of hard bulges around the textured patterns. Overall, the crosshatch pattern showed better oil retention capacity and lower friction in combination with different vegetable oils, thus making it a promising choice for improving tribological performance in various environmentally friendly applications.

3.
Materials (Basel) ; 16(7)2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-37048932

RESUMO

Stainless steels are important in various industries due to their unique properties and durable life cycle. However, with increasing demands for prolonged life cycles, better mechanical properties, and improved residual stresses, new treatment techniques, such as deep cryogenic treatment (DCT), are on the rise to further push the improvement in stainless steels. This study focuses on the effect of DCT on austenitic stainless steel AISI 304L, while also considering the influence of solution annealing temperature on DCT effectiveness. Both aspects are assessed through the research of microstructure, selected mechanical properties (hardness, fracture and impact toughness, compressive and tensile strength, strain-hardening exponent, and fatigue resistance), and residual stresses by comparing the DCT state with conventionally treated counterparts. The results indicate the complex interdependency of investigated microstructural characteristics and residual stress states, which is the main reason for induced changes in mechanical properties. The results show both the significant and insignificant effects of DCT on individual properties of AISI 304L. Overall, solution annealing at a higher temperature (1080 °C) showed more prominent results in combination with DCT, which can be utilized for different manufacturing procedures of austenitic stainless steels for various applications.

4.
Materials (Basel) ; 16(7)2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-37049080

RESUMO

The hot deformation of metal as a nonlinear system is mathematically described by a local linear model associated with the working conditions using a transfer function (TF) in the Laplace domain. Experimental data (true stress vs. true strain curves) are obtained using the established compressive uniaxial deformation test, where experimental conditions (strain rate and temperature) define the working conditions of the local linear TF model, which is intrinsically a function of strain. Based on the TF model, three important physical quantities of the tested metal are determined exactly: the work done per unit deformation, the average flow stress, and the flow-stress derivative with respect to the strain based on a particular TF. The exactly determined quantities, determined as a function of strain, can replace the previously used approximations in some rolling force and torque calculations.

6.
Materials (Basel) ; 15(13)2022 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-35806556

RESUMO

Creep is defined as the permanent deformation of materials under the effect of sustained stress and elevated temperature for long periods of time, which can essentially lead to fracture. Due to very time-consuming and expensive testing requirements, existing experimental creep data are often analyzed using derived engineering parameters and models to predict and find the correlations between creep life (time to rupture), temperature and stress. The objective of this study was to analyze and compare different numerical algorithms by using the Larson-Miller parameter (LMP) extrapolation model. Calculations were performed using the classical LMP equation where different values of parameter C were selected, as well as using a modified LMP equation in which parameter C was stress dependent C(σ). The impact of two different approaches of extrapolation and correlation functions (linear and polynomial) applied to fit the LMP model was also investigated. A detailed analysis was performed to choose the best extrapolation fit function and error tolerance. The numerical algorithm implemented was validated through creep rupture testing performed on 10CrMo9-10 steel at 600 °C (873 K) and 80 MPa. Creep model behavior analysis proved that different values of C can significantly change the estimated time to rupture. An excellent response of the LMP model was obtained by considering polynomial dependency when parameter C was assumed to be 18, especially for the temperature range from 773 to 873 K. Promising results were also achieved when parameter C was taken as stress-dependent, but only for linear fitting, which requires further analysis. However, at validation stage it turned out that only the linear extrapolation function and C taken as a constant value provided adequate time-to-rupture prediction. In the case of C = 18, estimated time was slightly overestimated (~8%) and for C = 20 it was underestimated by 27%. In all other cases error largely exceeded 50%.

7.
Materials (Basel) ; 15(9)2022 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-35591309

RESUMO

A Nd-YAG laser was used for texturing the Ti6Al4V surface with dimples of diameter 50 and 100 µm and centre-to-centre distance 100, 200 and 400 µm, defining the surface texture density. The tribological evaluation was conducted to analyse and compare the behaviour of un-textured and laser-textured samples under water in comparison to oil (PAO6) lubrication without and with the addition of MoS2 nanotubes into the lubricant. MoS2 nanotubes had a positive effect on friction in both media for laser-textured Ti6Al4V. Evaluation of friction and wear in water and PAO6 showed a comparable tribological response in water to oil for specific laser-textured configurations, proving the novel concept of green tribology for laser texturing in combination with MoS2 nanotubes/water lubrication.

8.
Materials (Basel) ; 15(7)2022 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-35407904

RESUMO

Spontaneous metallic Pb whisker formation from Pb and Bi containing Al-alloy's surfaces is a newly discovered phenomenon. The whiskers display unique formations, growth and morphology, which give the opportunity to be applied for specialized sensor and electronics applications. Within this work, the impact of environmental conditions (gas composition and moisture) is investigated and correlated with the modification of whisker evolution and growth dynamics. Furthermore, the residual stress state of the aluminum matrix using deep cryogenic treatment is modified and used to further increase whisker nucleation and growth by up to three- and seven-fold, respectively, supported by quantitative results. The results of this paper indicate the possibility to manipulate the whisker not only in terms of their kinetics but also their morphology (optimal conditions are 20% O2 and 35% humidity). Such features allow the tailoring of the whisker structure and surface to volume ratio, which can be optimized for different applications. Finally, this research provides new insight into the growth dynamics of the whiskers through in situ and ex situ measurements, providing further evidence of the complex nucleation and growth mechanisms that dictate the spontaneous growth of Pb whiskers from Al-alloy 6026 surfaces with growth velocities up to 1.15 µm/s.

9.
Materials (Basel) ; 14(24)2021 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-34947156

RESUMO

New approaches to improving wear resistance with an affordable and noncomplex technology, such as deep cryogenic treatment, (DCT0), are receiving attention. The aim of this study is to investigate the effect of DCT on the friction and wear performance of high-speed steels. AISI M2, AISI M3:2 and AISI M35 were heat-treated under different conditions, and then investigated under dry sliding conditions. Tribological testing involved different contact conditions, prevailing wear mechanisms and loading conditions. The DCT effect on sliding wear resistance depends on HSS steel grade, as well as contact conditions and wear mode, whereas it improves the dynamic impact of the wear and galling resistance.

10.
Materials (Basel) ; 14(21)2021 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-34771881

RESUMO

The effect of deep cryogenic treatment (DCT) on corrosion resistance of steels AISI 52100 and AISI D3 is investigated and compared with conventional heat-treated counterparts. DCT's influence on microstructural changes is subsequently correlated to the corrosion resistance. DCT is confirmed to reduce the formation of corrosion products on steels' surface, retard the corrosion products development and propagation. DCT reduces surface cracking, which is considered to be related to modified residual stress state of the material. DCT's influence on each steel results from the altered microstructure and alloying element concentration that depends on steel matrix and type. This study presents DCT as an effective method for corrosion resistance alteration of steels.

11.
Nanomaterials (Basel) ; 11(7)2021 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-34361228

RESUMO

The elucidation of spontaneous growth of metal whiskers from metal surfaces is still ongoing, with the mainstream research conducted on Sn whiskers. This work reports on the discovery of Pb whisker growth from Bi-Mg-Pb solid pools found in common machinable aluminum alloy. The whiskers and hillocks display unique morphologies and complex growth that have not been documented beforehand. In contrast to typical understanding of whisker growth, the presented Pb whiskers show a clear nanocrystalline induced growth mechanism, which is a novel concept. Furthermore, the investigated whiskers are also found to be completely composed of nanocrystals throughout their entire length. The performed research gives new insight into nucleation and growth of metal whiskers, which raises new theoretical questions and challenges current theories of spontaneous metal whisker growth. Additionally, this work provides the first microscopic confirmation of recrystallization growth theory of whiskers that relates to oriented attachment of nanocrystals formed within an amorphous metallic matrix. The impact of mechanical stress, generated through Bi oxidation within the pools, is theoretically discussed with relation to the observed whisker and hillock growth. The newly discovered nanocrystalline growth provides a new step towards understanding spontaneous metal whisker growth and possibility of developing nanostructures for potential usage in sensing and electronics applications.

12.
Materials (Basel) ; 13(7)2020 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-32260518

RESUMO

An AISI 316L surface was functionalized by the adsorption of hydrophilic epoxy and epoxy/TiO2/epoxy coatings and hydrophobic epoxy/fluoroalkylsilanefunctionalized FASTiO2/epoxy coatings. We characterized the coatings' wettability, morphology and average surface roughness and discussed the influence of surface wettability and morphology on the coefficient of friction and the wear resistance. Experiments were performed in dry, distilled water and in a simulated physiological solution (Hank's solution). In the case of dry sliding, a lower coefficient of friction is achieved for both TiO2 coatings compared to the pure epoxy coating. In a water environment the same level of friction is shown for all three coatings, whereas in Hank's solution the friction is reduced for the hydrophilic epoxy/TiO2/epoxy coating, increased for the hydrophobic epoxy/FASTiO2/epoxy coating and has no effect on the pure epoxy coating. The results show that the corrosion resistance is significantly improved for the hydrophobic epoxy/FASTiO2/epoxy coating compared to the hydrophilic pure epoxy and epoxy/TiO2/epoxy coatings.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...