Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 129(1): 013602, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35841581

RESUMO

Quantum non-Gaussian mechanical states are already required in a range of applications. The discrete building blocks of such states are the energy eigenstates-Fock states. Despite progress in their preparation, the remaining imperfections can still invisibly cause loss of the aspects critical for their applications. We derive and apply the most challenging hierarchy of quantum non-Gaussian criteria on the characterization of single trapped-ion oscillator mechanical Fock states with up to 10 phonons. We analyze the depth of these quantum non-Gaussian features under intrinsic mechanical heating and predict their requirement for reaching quantum advantage in the sensing of a mechanical force.

2.
Phys Rev Lett ; 127(6): 063603, 2021 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-34420343

RESUMO

We demonstrate an optical method for detecting the mechanical oscillations of an atom with single-phonon sensitivity. The measurement signal results from the interference between the light scattered by a trapped atomic ion and that of its mirror image. We detect the oscillations of the atom in the Doppler cooling limit and reconstruct average trajectories in phase space. We demonstrate single-phonon sensitivity near the ground state of motion after electronically induced transparency cooling. These results could be applied for motion detection of other light scatterers of fundamental interest, such as trapped nanoparticles.

3.
Rev Sci Instrum ; 90(8): 083201, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31472618

RESUMO

The lifetime of trapped ion ensembles corresponds to a crucial parameter determining the potential scalability of their prospective applications and is often limited by the achievable vacuum level in the apparatus. We report on the realization of a room-temperature 40Ca+ ion trapping vacuum apparatus with unprecedentedly low reaction rates of ions with a dominant vacuum contaminant: hydrogen. We present our trap assembly procedures and hydrogen pressure characterization by analysis of the CaH+ molecule formation rate.

4.
Opt Express ; 25(25): 31230-31238, 2017 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-29245800

RESUMO

Generation of nonclassical light is an essential tool for quantum optics research and applications in quantum information technology. We present realization of the source of nonclassically correlated photon pairs based on the process of spontaneous four-wave-mixing in warm atomic vapor. Atoms are excited only by a single laser beam in retro-reflected configuration and narrowband frequency filtering is employed for selection of correlated photon pairs. Nonclassicality of generated light fields is proved by analysis of their statistical properties. Measured parameters of the presented source promise further applicability for efficient interaction with atomic ensembles.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...