Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Chem ; 10: 806553, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35360534

RESUMO

The electrodeposition of Ni-Mo-W alloys and composites with TiO2 are examined with a rotating Hull cell to better understand the influence of the particle on the deposition composition and morphology. The addition of the TiO2 particle to the electrolyte and deposit, significantly affected the deposit composition when the electrolyte temperature was 650C. Both Ni and Mo composition in the deposit was enhanced, but not due to higher reaction rates. The enhancement was a result of an apparent inhibition by the hydrogen evolving side reaction. The W partial current density was most significantly inhibited. The deposit morphology changed with the addition of TiO2 with a reduction of microcracks compared to the particle-free deposit. The results suggest that the adsorption of the hydrogen intermediate from the side reaction is influenced by the particle, hindering hydrogen desorption, and indirectly affects the partial current densities of the nickel, molybdate and tungstate ion reduction and the morphology.

2.
Front Chem ; 7: 542, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31428600

RESUMO

The electrodeposition of Fe-Co-W alloys was examined using a rotating cylinder Hull (RCH) cell and conditions were determined to create nanowires. The metal ion reduction mechanism was a combination of induced and anomalous codeposition, with water reduction as a gas evolving side reaction, rending deposition into recesses a challenge. In thin film deposition, under kinetic control, the addition of Fe ions into the electrolyte, greatly reduced the Co partial current density, and thus it's content in the deposit. The change of Co partial current density was attributed to an anomalous codeposition behavior, but it had a minimal effect in changing the W wt% in the deposit, despite the expected inducing characteristic of Fe when codeposited with tungsten. Deposition conditions were determined to electrodeposit Fe-Co-W nanowires having similar concentration as the thin films. Nanowires were electrodeposited into polycarbonate membranes under pulsed current at room temperature.

3.
Nano Lett ; 19(6): 3569-3574, 2019 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-31117749

RESUMO

A novel method to fabricate porous Fe-Ni-Co nanowires directly by electrodepositing into polycarbonate membranes is reported when the electrolyte pH < 0.5. Hydrogen bubbles are used as a dynamic porous template created by operating in electrolytes with very low pH to drive the proton reduction reaction. The electrolyte pH was adjusted with sulfuric acid, and the added sulfate ions are thought to help reduce bubble coalescence, but not detachment at the electrode surface, to facilitate metal deposition within the nanopores. Porous nanowires were obtained when the electrolyte pH was less than 1.0. The average alloy composition was found to be pH sensitive, which shifted from an Fe-rich porous alloy to a Ni-rich porous alloy as the electrolyte pH decreased.


Assuntos
Cobalto/química , Ferro/química , Nanofios/química , Níquel/química , Ligas/química , Galvanoplastia/métodos , Hidrogênio/química , Nanotecnologia/métodos , Nanofios/ultraestrutura , Cimento de Policarboxilato/química , Porosidade
4.
Nano Lett ; 16(12): 7439-7445, 2016 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-27960473

RESUMO

A new methodology is reported to shape template-assisted electrodeposition of Fe-rich, Fe-Ni-Co nanowires to have a thin nanowire segment using a coupled displacement reaction with a more noble elemental ion, Cu(II), and at the same time dealloying predominantly Fe from Fe-Ni-Co by the reduction of protons (H+), followed by a subsequent etching step. The displacement/dealloyed layer was sandwiched between two trilayers of Fe-Ni-Co to facilitate the characterization of the reaction front, or penetration length. The penetration length region was found to be a function of the ratio of proton and Cu(II) concentration, and a ratio of 0.5 was found to provide the largest penetration rate, and hence the larger thinned length of the nanowire. Altering the etching time affected the diameter of the thinned region. This methodology presents a new way to thin nanowire segments connected to larger nanowire sections and also introduces a way to study the propagation of a reaction front into a nanowire.

5.
Chemosphere ; 147: 98-104, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26761603

RESUMO

In this study, different cathode materials were evaluated for electrochemical degradation of aqueous phase trichloroethylene (TCE). A cathode followed by an anode electrode sequence was used to support reduction of TCE at the cathode via hydrodechlorination (HDC). The performance of iron (Fe), copper (Cu), nickel (Ni), aluminum (Al) and carbon (C) foam cathodes was evaluated. We tested commercially available foam materials, which provide large electrode surface area and important properties for field application of the technology. Ni foam cathode produced the highest TCE removal (68.4%) due to its high electrocatalytic activity for hydrogen generation and promotion of HDC. Different performances of the cathode materials originate from differences in the bond strength between atomic hydrogen and the material. With a higher electrocatalytic activity than Ni, Pd catalyst (used as cathode coating) increased TCE removal from 43.5% to 99.8% for Fe, from 56.2% to 79.6% for Cu, from 68.4% to 78.4% for Ni, from 42.0% to 63.6% for Al and from 64.9% to 86.2% for C cathode. The performance of the palladized Fe foam cathode was tested for degradation of TCE in the presence of nitrates, as another commonly found groundwater species. TCE removal decreased from 99% to 41.2% in presence of 100 mg L(-1) of nitrates due to the competition with TCE for HDC at the cathode. The results indicate that the cathode material affects TCE removal rate while the Pd catalyst significantly enhances cathode activity to degrade TCE via HDC.


Assuntos
Metais/química , Tricloroetileno/química , Poluentes Químicos da Água/química , Catálise , Técnicas Eletroquímicas , Eletrodos , Nitratos/química , Soluções
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...