Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 430, 2023 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-36624298

RESUMO

Nested within the Mediterranean biodiversity hotspot, the Dinaric Karst of the western Balkans is one of the world's most heterogeneous subterranean ecosystems and renowned for its highly diverse and mostly endemic fauna. The evolutionary processes leading to both endemism and diversity remain insufficiently understood, and large-scale analyses on taxa that are abundant in both subterranean and surface habitats remain infrequent. Here, we provide the first comprehensive molecular study on Croatian pseudoscorpions, a lineage of arachnids that is common and diverse in both habitats. Phylogenetic reconstructions using 499 COI sequences derived from 128 morphospecies collected across the Dinaric Karst show that: (i) occurrence in karstic microhabitats boosters speciation and endemism in the most diverse genera Chthonius C.L. Koch, 1843 (37 morphospecies) and Neobisium Chamberlin, 1930 (34 morphospecies), (ii) evidence for ongoing diversification is found in many species and species complexes through low optimal thresholds (OTs) and species delineation analyses, and (iii) landscape features, such as mountain ranges, correlate with patterns of genetic diversity in the diverse genus Neobisium. We present two synonymies: Protoneobisium Curcic, 1988 = Neobisium, syn. nov., and Archaeoroncus Curcic and Rada, 2012 = Roncus L. Koch, 1873, syn. nov. Overall, our study suggests that karstic microhabitats promote diversification in soil- and cave-dwelling arthropods at all taxonomic levels, but also provide important refugia for invertebrates in past and present periods of environmental change.


Assuntos
Aracnídeos , Ecossistema , Animais , Filogenia , Biodiversidade , Evolução Biológica
2.
PeerJ ; 10: e13213, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35469200

RESUMO

Background: The hemi-metabolous aquatic order Plecoptera (stoneflies) constitutes an indispensable part of terrestrial and aquatic food webs due to their specific life cycle and habitat requirements. Stoneflies are considered one of the most sensitive groups to environmental changes in freshwater ecosystems and anthropogenic changes have caused range contraction of many species. Given the critical threat to stoneflies, the study of their distribution, morphological variability and genetic diversity should be one of the priorities in conservation biology. However, some aspects about stoneflies, especially a fully resolved phylogeny and their patterns of distribution are not well known. A study that includes comprehensive field research and combines morphological and molecular identification of stoneflies has not been conducted in Croatia so far. Thus, the major aim of this study was to regenerate a comprehensive and taxonomically well-curated DNA barcode database for Croatian stoneflies, to highlight the morphological variability obtained for several species and to elucidate results in light of recent taxonomy. Methods: A morphological examination of adult specimens was made using basic characteristics for distinguishing species: terminalia in males and females, head and pronotum patterns, penial morphology, and egg structures. DNA barcoding was applied to many specimens to help circumscribe known species, identify cryptic or yet undescribed species, and to construct a preliminary phylogeny for Croatian stoneflies. Results: Sequences (658 bp in length) of 74 morphospecies from all families present in Croatia were recovered from 87% of the analysed specimens (355 of 410), with one partial sequence of 605 bp in length for Capnopsis schilleri balcanica Zwick, 1984. A total of 84% morphological species could be unambiguously identified using COI sequences. Species delineation methods confirmed the existence of five deeply divergent genetic lineages, with monophyletic origin, which also differ morphologically from their congeners and represent distinct entities. BIN (Barcode Index Number) assignment and species delineation methods clustered COI sequences into different numbers of operational taxonomic units (OTUs). ASAP delimited 76 putative species and achieved a maximum match score with morphology (97%). ABGD resulted in 62 and mPTP in 61 OTUs, indicating a more conservative approach. Most BINs were congruent with traditionally recognized species. Deep intraspecific genetic divergences in some clades highlighted the need for taxonomic revision in several species-complexes and species-groups. Research has yielded the first molecular characterization of nine species, with most having restricted distributions and confirmed the existence of several species which had been declared extinct regionally.


Assuntos
Código de Barras de DNA Taxonômico , Insetos , Humanos , Masculino , Animais , Feminino , Insetos/genética , Código de Barras de DNA Taxonômico/métodos , Croácia , Ecossistema , DNA , Biodiversidade
3.
Zookeys ; 1078: 85-106, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35068954

RESUMO

A new species of the Yellow Sally genus (Isoperla Banks, 1906) is described, based on morphological (males and females adults, larval and egg) and molecular (the barcode region of the cytochrome c oxidase subunit I gene (COI)) features. Popijac's Yellow Sally, I.popijaci Hlebec & Sivec, sp. nov. inhabits two karstic sources of the Krasulja rivulet in Croatia. Male and female of the new species are characterised by colouration patterns of the head and pronotum; the dimensions of the female subgenital plate; the medial penial armature and oval-shaped egg without collar and anchor. The larvae differ from their congeners by the uniquely coloured head and pronotum. Based on morphological characteristics I.popijaci sp. nov. belongs to the I.tripartita species group. Phylogenetic and taxonomic relationships were reconstructed using three methods of phylogenetic inference and three species delimitation methods. As I.popijaci sp. nov. occurs at a narrow area of the Krasulja rivulet in Krbava field, the study puts emphasis on the conservation and hotspot importance of the temporary rivers in the Dinaric karst. Furthermore, the study accentuates the necessity for further research on the genetic diversity of Plecoptera in Croatia.

4.
BMC Evol Biol ; 20(1): 146, 2020 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-33158414

RESUMO

BACKGROUND: Austropotamobius torrentium is a freshwater crayfish species native to central and south-eastern Europe, with an intricate evolutionary history and the highest genetic diversity recorded in the northern-central Dinarides (NCD). Its populations are facing declines, both in number and size across its entire range. By extanding current knowledge on the genetic diversity of this species, we aim to assist conservation programmes. Multigene phylogenetic analyses were performed using different divergence time estimates based on mitochondrial and, for the first time, nuclear DNA markers on the largest data set analysed so far. In order to reassess taxonomic relationships within this species we applied several species delimitation methods and studied the meristic characters with the intention of finding features that would clearly separate stone crayfish belonging to different phylogroups. RESULTS: Our results confirmed the existence of high genetic diversity within A. torrentium, maintained in divergent phylogroups which have their own evolutionary dynamics. A new phylogroup in the Kordun region belonging to NCD has also been discovered. Due to the incongruence between implemented species delimitation approaches and the lack of any morphological characters conserved within lineages, we are of the opinion that phylogroups recovered on mitochondrial and nuclear DNA are cryptic subspecies and distinct evolutionary significant units. CONCLUSIONS: Geographically and genetically isolated phylogroups represent the evolutionary legacy of A. torrentium and are highly relevant for conservation due to their evolutionary distinctiveness and restricted distribution.


Assuntos
Astacoidea , Variação Genética , Filogenia , Animais , Astacoidea/genética , Evolução Biológica , Núcleo Celular/genética , DNA Mitocondrial/genética
5.
Front Zool ; 10(1): 5, 2013 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-23388548

RESUMO

BACKGROUND: Patterns of biodiversity in the subterranean realm are typically different from those encountered on the Earth's surface. The Dinaric karst of Croatia, Slovenia and Bosnia and Herzegovina is a global hotspot of subterranean biodiversity. How this was achieved and why this is so remain largely unresolved despite a long tradition of research. To obtain insights into the colonisation of the Dinaric Karst and the effects of the subterranean realm on its inhabitants, we studied the tertiary relict Congeria, a unique cave-dwelling bivalve (Dreissenidae), using a combination of biogeographical, molecular, morphological, and paleontological information. RESULTS: Phylogenetic and molecular clock analyses using both nuclear and mitochondrial markers have shown that the surviving Congeria lineage has actually split into three distinct species, i.e., C. kusceri, C. jalzici sp. nov. and C. mulaomerovici sp. nov., by vicariant processes in the late Miocene and Pliocene. Despite millions of years of independent evolution, analyses have demonstrated a great deal of shell similarity between modern Congeria species, although slight differences in hinge plate structure have enabled the description of the two new species. Ancestral plesiomorphic shell forms seem to have been conserved during the processes of cave colonisation and subsequent lineage isolation. In contrast, shell morphology is divergent within one of the lineages, probably due to microhabitat differences. CONCLUSIONS: Following the turbulent evolution of the Dreissenidae during the Tertiary and major radiations in Lake Pannon, species of Congeria went extinct. One lineage survived, however, by adopting a unique life history strategy that suited it to the underground environment. In light of our new data, an alternative scenario for its colonisation of the karst is proposed. The extant Congeria comprises three sister species that, to date, have only been found to live in 15 caves in the Dinaric karst. Inter-specific morphological stasis and intra-specific ecophenotypic plasticity of the congerid shell demonstrate the contrasting ways in which evolution in the underground environments shapes its inhabitants.

6.
J Mol Evol ; 64(3): 308-20, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17225967

RESUMO

Two distinct cytochrome b-like sequences were discovered in the genome of Podarcis sicula. One of them represents a nuclear copy of a mitochondrial sequence (numt-sic) differing by 14.3% from the authentic mitochondrial (mt) sequence obtained from the same individual. This numt, however, differs by only 2.7% from the mt sequence found in one population of Podarcis muralis, a related species in which no corresponding numt was detected. The numt-sic sequence extends over at least 7637 bp and is homologous to a section of the mt genome spanning from the tRNA-Lys to the tRNA-Pro gene. Premature mt stop codons were detected in two of the nine protein coding genes of numt-sic. The distribution of substitutions among the three codon positions and the transition/transversion ratio of the numt-sic sequence resemble, with few exceptions, those of functional mt genes, indicating a rather recent transfer to the nucleus. Phylogenetic analyses performed on the data set including P. sicula numt-cytb sequences as well as mt-cytb sequences from the same individuals and mt sequences of various P. muralis populations suggest that numt-sic originated in P. muralis. In a geographic survey, P. sicula populations belonging to different mt lineages, covering most of the distribution area, were screened for the presence of numt-sic and for a 15-bp duplication polymorphism in the numt-nd5 sequence. Our results suggest that numt-sic has spread rapidly through the species range via sexual transmission, thereby being transferred to populations belonging to well-separated mt lineages that diverged 1-3 Mya.


Assuntos
Núcleo Celular/genética , Citocromos b/genética , DNA Mitocondrial/genética , Evolução Molecular , Lagartos/genética , Pseudogenes/genética , Animais , Croácia , Genoma , Haplótipos , Itália , Lagartos/classificação , Dados de Sequência Molecular , Filogenia , RNA de Transferência/genética , Análise de Sequência de DNA
7.
Mol Ecol ; 14(2): 575-88, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15660947

RESUMO

In a phylogeographical survey of the Italian wall lizard, Podarcis sicula, DNA sequence variation along an 887-bp segment of the cytochrome b gene was examined in 96 specimens from 86 localities covering the distribution range of the species. In addition, parts of the 12S rRNA and 16S rRNA genes from 12 selected specimens as representatives of more divergent cytochrome b haploclades were sequenced (together about 950 bp). Six phylogeographical main groups were found, three representing samples of the nominate subspecies Podarcis sicula sicula and closely related subspecies and the other three comprising Podarcis sicula campestris as well as all subspecies described from northern and eastern Adriatic islands. In southern Italy a population group with morphological characters of P. s. sicula but with the mitochondrial DNA features of P. s. campestris was detected indicating a probably recent hybridization zone. The present distribution patterns were interpreted as the consequence of natural events like retreats to glacial refuges and postglacial area expansions, but also as the results of multiple introductions by man.


Assuntos
Demografia , Lagartos/genética , Filogenia , Animais , Sequência de Bases , Teorema de Bayes , Citocromos b/genética , Primers do DNA , DNA Ribossômico/genética , Geografia , Haplótipos/genética , Itália , Funções Verossimilhança , Modelos Genéticos , Dados de Sequência Molecular , Análise de Sequência de DNA , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...