Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Clin Invest ; 53(12): e14070, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37547943

RESUMO

BACKGROUND: In ulcerative colitis, the complexity of mucosal cytokine secretion profiles and how they correlate with endoscopic and clinical scores is still unclear. METHODS: In this study, we collected fresh biopsies from UC patients to investigate which cytokines are produced in ex vivo culture conditions, a platform increasingly used for testing of novel drugs. Then, we correlated cytokine production with several scoring indices commonly used to assess the severity of the disease. RESULTS: Increased levels of IL-1ß, IL-2, IL-4, IL-6, IL-8, IL-10, IL-12, IL-13, TNFα and IFNÉ£ were produced by biopsies of UC patients compared to non-IBD controls. Our results show a better correlation of cytokine levels with Mayo Endoscopic Subscore (MES) and Mayo score, than the more complex Ulcerative Colitis Endoscopic Index of Severity (UCEIS). Out of 10 measured cytokines, eight correlated with MES, six with Mayo score and only three with UCEIS, due to the partial increase in cytokine secretion observed in donors with UCEIS = 7-8. When we analysed individual subscores within the UCEIS, Vascular Network subscore showed a correlation similar to MES (7/10 cytokines), while Bleeding as well as Erosions and Ulcers subscores correlated with only 3/10 cytokines, similarly to the total UCEIS. CONCLUSIONS: Our findings suggest that choosing biopsies from donors with MES = 2-3 and UCEIS = 2-6 from areas with no bleeding and no superficial and/or deep ulcers could enable a deeper insight into the cytokine profile of the inflamed tissue and represent a better tool for studying potential therapeutic targets and evaluation of novel therapies.


Assuntos
Colite Ulcerativa , Humanos , Colonoscopia/métodos , Úlcera/patologia , Biópsia , Índice de Gravidade de Doença , Mucosa Intestinal
2.
Proc Natl Acad Sci U S A ; 117(25): 14209-14219, 2020 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-32513731

RESUMO

The physical dimensions of proteins and glycans on cell surfaces can critically affect cell function, for example, by preventing close contact between cells and limiting receptor accessibility. However, high-resolution measurements of molecular heights on native cell membranes have been difficult to obtain. Here we present a simple and rapid method that achieves nanometer height resolution by localizing fluorophores at the tip and base of cell surface molecules and determining their separation by radially averaging across many molecules. We use this method, which we call cell surface optical profilometry (CSOP), to quantify the height of key multidomain proteins on a model cell, as well as to capture average protein and glycan heights on native cell membranes. We show that average height of a protein is significantly smaller than its contour length, due to thermally driven bending and rotation on the membrane, and that height strongly depends on local surface and solution conditions. We find that average height increases with cell surface molecular crowding but decreases with solution crowding by solutes, both of which we confirm with molecular dynamics simulations. We also use experiments and simulations to determine the height of an epitope, based on the location of an antibody, which allows CSOP to profile various proteins and glycans on a native cell surface using antibodies and lectins. This versatile method for profiling cell surfaces has the potential to advance understanding of the molecular landscape of cells and the role of the molecular landscape in cell function.


Assuntos
Membrana Celular/química , Proteínas de Membrana/química , Polissacarídeos/química , Anticorpos , Linhagem Celular , Membrana Celular/metabolismo , Membrana Celular/ultraestrutura , Epitopos , Imunofluorescência , Células HEK293 , Humanos , Lectinas , Bicamadas Lipídicas , Proteínas de Membrana/ultraestrutura , Modelos Moleculares , Polissacarídeos/metabolismo , Domínios Proteicos
3.
J Cell Biol ; 218(9): 2841-2853, 2019 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-31420452

RESUMO

Dynamic organization of microtubule minus ends is vital for the formation and maintenance of acentrosomal microtubule arrays. In vitro, both microtubule ends switch between phases of assembly and disassembly, a behavior called dynamic instability. Although minus ends grow slower, their lifetimes are similar to those of plus ends. The mechanisms underlying these distinct dynamics remain unknown. Here, we use an in vitro reconstitution approach to investigate minus-end dynamics. We find that minus-end lifetimes are not defined by the mean size of the protective GTP-tubulin cap. Rather, we conclude that the distinct tubulin off-rate is the primary determinant of the difference between plus- and minus-end dynamics. Further, our results show that the minus-end-directed kinesin-14 HSET/KIFC1 suppresses tubulin off-rate to specifically suppress minus-end catastrophe. HSET maintains its protective minus-end activity even when challenged by a known microtubule depolymerase, kinesin-13 MCAK. Our results provide novel insight into the mechanisms of minus-end dynamics, essential for our understanding of microtubule minus-end regulation in cells.


Assuntos
Cinesinas/química , Microtúbulos/química , Tubulina (Proteína)/química , Animais , Bovinos , Cinesinas/metabolismo , Microtúbulos/metabolismo , Tubulina (Proteína)/metabolismo
4.
Cell ; 174(1): 131-142.e13, 2018 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-29958103

RESUMO

Macrophages protect the body from damage and disease by targeting antibody-opsonized cells for phagocytosis. Though antibodies can be raised against antigens with diverse structures, shapes, and sizes, it is unclear why some are more effective at triggering immune responses than others. Here, we define an antigen height threshold that regulates phagocytosis of both engineered and cancer-specific antigens by macrophages. Using a reconstituted model of antibody-opsonized target cells, we find that phagocytosis is dramatically impaired for antigens that position antibodies >10 nm from the target surface. Decreasing antigen height drives segregation of antibody-bound Fc receptors from the inhibitory phosphatase CD45 in an integrin-independent manner, triggering Fc receptor phosphorylation and promoting phagocytosis. Our work shows that close contact between macrophage and target is a requirement for efficient phagocytosis, suggesting that therapeutic antibodies should target short antigens in order to trigger Fc receptor activation through size-dependent physical segregation.


Assuntos
Anticorpos Monoclonais/imunologia , Antígenos/química , Macrófagos/imunologia , Proteínas Opsonizantes/metabolismo , Fagocitose , Animais , Anticorpos Monoclonais/química , Antígenos/genética , Antígenos/imunologia , Antígeno Carcinoembrionário/química , Antígeno Carcinoembrionário/genética , Antígeno Carcinoembrionário/imunologia , Edição de Genes , Integrinas/metabolismo , Antígenos Comuns de Leucócito/química , Antígenos Comuns de Leucócito/genética , Antígenos Comuns de Leucócito/imunologia , Macrófagos/citologia , Camundongos , Proteínas Opsonizantes/química , Fosforilação , Células RAW 264.7 , Receptores Fc/imunologia , Receptores Fc/metabolismo , Lipossomas Unilamelares/química
5.
Mol Biol Cell ; 25(22): 3482-5, 2014 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-25368426

RESUMO

Quantitative methods and approaches have been playing an increasingly important role in cell biology in recent years. They involve making accurate measurements to test a predefined hypothesis in order to compare experimental data with predictions generated by theoretical models, an approach that has benefited physicists for decades. Building quantitative models in experimental biology not only has led to discoveries of counterintuitive phenomena but has also opened up novel research directions. To make the biological sciences more quantitative, we believe a two-pronged approach needs to be taken. First, graduate training needs to be revamped to ensure biology students are adequately trained in physical and mathematical sciences and vice versa. Second, students of both the biological and the physical sciences need to be provided adequate opportunities for hands-on engagement with the methods and approaches necessary to be able to work at the intersection of the biological and physical sciences. We present the annual Physiology Course organized at the Marine Biological Laboratory (Woods Hole, MA) as a case study for a hands-on training program that gives young scientists the opportunity not only to acquire the tools of quantitative biology but also to develop the necessary thought processes that will enable them to bridge the gap between these disciplines.


Assuntos
Biologia Celular/educação , Educação de Pós-Graduação/organização & administração , Modelos Biológicos , Disciplinas das Ciências Naturais/educação , Biologia Celular/tendências , Simulação por Computador , Educação de Pós-Graduação/métodos , Humanos , Disciplinas das Ciências Naturais/tendências , Estudantes
6.
J Biol Chem ; 289(41): 28087-93, 2014 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-25172511

RESUMO

Stu2 is the budding yeast member of the XMAP215/Dis1 family of microtubule polymerases. It is essential in cell division, allowing proper spindle orientation and metaphase chromosome alignment, as well as spindle elongation during anaphase. Despite Stu2 having a phenotype that suggests it promotes microtubule growth, like the other members of the XMAP215/Dis1 family, previous studies with purified Stu2 indicate only that it antagonizes microtubule growth. One potential explanation for these contradictory findings is that the assays were performed with mammalian brain tubulin, which may not be the right substrate to test the activity of Stu2 given that yeast and brain tubulins are quite divergent in sequence and that the vertebrate tubulins are subject to many post-translational modifications. To test this possibility, we reconstituted the activity of Stu2 with purified budding yeast tubulin. We found that Stu2 accelerated microtubule growth in yeast tubulin by severalfold, similar to the acceleration reported for XMAP215 in porcine brain tubulin. Furthermore, Stu2 accelerated polymerization in yeast tubulin to a much greater extent than in porcine brain tubulin, and the concentration of Stu2 required to reach 50% maximum activity in yeast tubulin was nearly 2 orders of magnitude lower than that in porcine brain tubulin. We conclude that Stu2 is a microtubule polymerase, like its relatives, and that its activity is considerably higher in yeast tubulin compared with mammalian brain tubulin. The biochemical properties of Stu2 reported here account for many of the phenotypes of Stu2 observed in cells.


Assuntos
Proteínas Associadas aos Microtúbulos/química , Microtúbulos/química , Proteínas Recombinantes de Fusão/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/química , Tubulina (Proteína)/química , Sequência de Aminoácidos , Animais , Química Encefálica , Expressão Gênica , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Dados de Sequência Molecular , Polimerização , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Homologia de Sequência de Aminoácidos , Especificidade da Espécie , Suínos , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo
7.
J Cell Sci ; 126(Pt 23): 5400-11, 2013 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-24101725

RESUMO

In the absence of landmark proteins, hyphae of Aspergillus nidulans lose their direction of growth and show a zigzag growth pattern. Here, we show that the cell-end marker protein TeaA is important for localizing the growth machinery at hyphal tips. The central position of TeaA at the tip correlated with the convergence of the microtubule (MT) ends to a single point. Conversely, in the absence of TeaA, the MTs often failed to converge to a single point at the cortex. Further analysis suggested a functional connection between TeaA and AlpA (an ortholog of the MT polymerase Dis1/CKAP5/XMAP215) for proper regulation of MT growth at hyphal tips. AlpA localized at MT plus-ends, and bimolecular fluorescence complementation assays suggested that it interacted with TeaA after MT plus-ends reached the tip cortex. In vitro MT polymerization assays showed that AlpA promoted MT growth up to sevenfold. Addition of the C-terminal region of TeaA increased the catastrophe frequency of the MTs. Thus, the control of the AlpA activity through TeaA might be a novel principle for MT growth regulation after reaching the cortex. In addition, we present evidence that the curvature of hyphal tips also could be involved in the control of MT growth at hyphal tips.


Assuntos
Aspergillus nidulans/genética , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Hifas/genética , Proteínas Associadas aos Microtúbulos/genética , Microtúbulos/genética , Aspergillus nidulans/metabolismo , Aspergillus nidulans/ultraestrutura , Polaridade Celular , Proteínas Fúngicas/metabolismo , Teste de Complementação Genética , Hifas/metabolismo , Hifas/ultraestrutura , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Microtúbulos/ultraestrutura , Polimerização , Estrutura Terciária de Proteína , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transdução de Sinais
8.
Mol Biol Cell ; 23(22): 4393-401, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22993214

RESUMO

We have developed a protocol that allows rapid and efficient purification of native, active tubulin from a variety of species and tissue sources by affinity chromatography. The affinity matrix comprises a bacterially expressed, recombinant protein, the TOG1/2 domains from Saccharomyces cerevisiae Stu2, covalently coupled to a Sepharose support. The resin has a high capacity to specifically bind tubulin from clarified crude cell extracts, and, after washing, highly purified tubulin can be eluted under mild conditions. The eluted tubulin is fully functional and can be efficiently assembled into microtubules. The method eliminates the need to use heterologous systems for the study of microtubule-associated proteins and motor proteins, which has been a major issue in microtubule-related research.


Assuntos
Cromatografia de Afinidade/métodos , Spodoptera/metabolismo , Tubulina (Proteína)/isolamento & purificação , Animais , Caenorhabditis elegans , Chlamydomonas reinhardtii , Células HEK293 , Humanos , Proteínas Associadas aos Microtúbulos/química , Estrutura Terciária de Proteína , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/química , Xenopus laevis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...