Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 924: 171627, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38471592

RESUMO

This study aimed to investigate the effect of soil pH change, and nitrogen amendment on ammonia oxidiser abundance and comammox Nitrospira community composition. The experimental design used soil mesocosms placed in a temperature-controlled incubator for 90 days. A Templeton silt loam was used as its physiochemical properties are typical of the region's dairy farms. The results showed that comammox Nitrospira clade B preferred the natural (pH 6.1-6.2) soil pH with no applied nitrogen. Furthermore, synthetic urine (N700) decreased the abundance of comammox Nitrospira clade B. This may have been because the large amounts of available ammonia in the N700 treatments inhibited the growth of comammox Nitrospira. These results suggest that while comammox Nitrospira clade B are present in New Zealand dairy farm soils, but their role in nitrification in the very high nitrogen environment under a urine patch in grazed pastures may be limited. Further research is needed to confirm this. In contrast to comammox, the AOB community (dominated by Nitrosospira) responded positively to the application of synthetic urine. The response was greatest in the high pH soil (7.1), followed by the natural and then the low pH (4.9) soils. This may be due to the difference in ammonia availability. At high pH, the ammonia/ammonium equilibrium favours ammonia production. Calculated ammonia availability in the N700 treatments accurately predicted the AOB amoA gene abundance. Interestingly, the AOA community abundance (which was predominantly made up of Thaumarchaeota group I.1b clade E) seemed to prefer the natural and high pH soils over the low pH. This may be due to the specific lineage of AOA present. AOA did not respond to the application of nitrogen.


Assuntos
Archaea , Betaproteobacteria , Amônia , Solo/química , Nitrogênio , Filogenia , Oxirredução , Microbiologia do Solo , Bactérias , Nitrificação , Concentração de Íons de Hidrogênio
2.
Plant Biol (Stuttg) ; 23(4): 592-602, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33745193

RESUMO

ROS are known to be accumulated in stigmas of different species and can possibly perform different functions important for plant reproduction. Here we tested the assumption that one of their functions is to control membrane potential and provoke synthesis of unique proteins in germinating pollen. We used spectrofluorometry and spectrophotometry to detect H2 O2 in stigma exudate, quantitative fluorescent microscopy of pollen tubes and flow cytometry of pollen protoplasts to reveal effects on membrane potential, and a label-free quantification approach to study pollen proteome changes after H2 O2 treatment. We found that in both growing pollen tubes and pollen protoplasts exudate causes plasmalemma hyperpolarization similar to that provoked by H2 O2 . This effect is abolished by catalase treatment and the ROS quencher, MnTMPP. Inhibitory analysis indicates probable participation of Ca2+ - and K+ -conducting channels in the observed hyperpolarization. For a deeper understanding of pollen response, we analysed proteome alterations in H2 O2 -treated pollen grains. We found 50 unique proteins and 20 differently accumulated proteins that are mainly involved in cell metabolism, energetics, protein synthesis and folding. Observed hyperpolarization and proteome alterations agree well with previously reported stimulation of pollen germination by H2 O2 and sensitivity of Ca2+ - and K+ -conducting channels to this ROS. Thus, H2 O2 is one of the active substances in tobacco stigma exudate that stimulates various physiological processes in germinating pollen.


Assuntos
Nicotiana , Tubo Polínico , Exsudatos e Transudatos , Peróxido de Hidrogênio , Potenciais da Membrana , Pólen , Proteoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...