Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Sci Rep ; 6: 38276, 2016 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-27922063

RESUMO

Calmodulin-based genetically encoded fluorescent calcium indicators (GCaMP-s) are powerful tools of imaging calcium dynamics from cells to freely moving animals. High affinity indicators with slow kinetics however distort the temporal profile of calcium transients. Here we report the development of reduced affinity ultrafast variants of GCaMP6s and GCaMP6f. We hypothesized that GCaMP-s have a common kinetic mechanism with a rate-limiting process in the interaction of the RS20 peptide and calcium-calmodulin. Therefore we targeted specific residues in the binding interface by rational design generating improved indicators with GCaMP6fu displaying fluorescence rise and decay times (t1/2) of 1 and 3 ms (37 °C) in vitro, 9 and 22-fold faster than GCaMP6f respectively. In HEK293T cells, GCaMP6fu revealed a 4-fold faster decay of ATP-evoked intracellular calcium transients than GCaMP6f. Stimulation of hippocampal CA1 pyramidal neurons with five action potentials fired at 100 Hz resulted in a single dendritic calcium transient with a 2-fold faster rise and 7-fold faster decay time (t1/2 of 40 ms) than GCaMP6f, indicating that tracking high frequency action potentials may be limited by calcium dynamics. We propose that the design strategy used for generating GCaMP6fu is applicable for the acceleration of the response kinetics of GCaMP-type calcium indicators.


Assuntos
Região CA1 Hipocampal/metabolismo , Cálcio/metabolismo , Calmodulina/metabolismo , Dendritos/metabolismo , Corantes Fluorescentes/química , Proteínas de Fluorescência Verde/metabolismo , Células Piramidais/metabolismo , Potenciais de Ação/fisiologia , Animais , Sítios de Ligação , Região CA1 Hipocampal/citologia , Sinalização do Cálcio , Calmodulina/química , Calmodulina/genética , Estimulação Elétrica , Corantes Fluorescentes/metabolismo , Expressão Gênica , Genes Reporter , Proteínas de Fluorescência Verde/química , Proteínas de Fluorescência Verde/genética , Células HEK293 , Humanos , Mutação , Peptídeos/química , Peptídeos/genética , Peptídeos/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Células Piramidais/citologia , Ratos Sprague-Dawley , Técnicas de Cultura de Tecidos
3.
Neurophotonics ; 2(2): 021014, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26158004

RESUMO

Imaging calcium transients associated with neuronal activity has yielded important insights into neural physiology. Genetically encoded calcium indicators (GECIs) offer conspicuous potential advantages for this purpose, including exquisite targeting. While the catalogue of available GECIs is steadily growing, many newly developed sensors that appear promising in vitro or in model cells appear to be less useful when expressed in mammalian neurons. We have, therefore, evaluated the performance of GECIs from two of the most promising families of sensors, G-CaMPs [Nat. Biotechnol.2(2), 137-141 (2001)] and GECOs [Science2(2), 1888-1891 (2011)], for monitoring action potentials in rat brain. Specifically, we used two-photon excitation fluorescence microscopy to compare calcium transients detected by G-CaMP3; GCaMP6f; G-CaMP7; Green-GECO1.0, 1.1 and 1.2; Blue-GECO; Red-GECO; Rex-GECO0.9; Rex-GECO1; Carmine-GECO; Orange-GECO; and Yellow-GECO1s. After optimizing excitation wavelengths, we monitored fluorescence signals associated with increasing numbers of action potentials evoked by current injection in CA1 pyramidal neurons in rat organotypic hippocampal slices. Some GECIs, particularly Green-GECO1.2, GCaMP6f, and G-CaMP7, were able to detect single action potentials with high reliability. By virtue of greatest sensitivity and fast kinetics, G-CaMP7 may be the best currently available GECI for monitoring calcium transients in mammalian neurons.

4.
CNS Neurol Disord Drug Targets ; 14(3): 350-9, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25106627

RESUMO

Probenecid has been widely used in the treatment of gout, but evidence suggests that it may also have antinociceptive effects in different inflammatory and pain conditions. We examined the potential modulatory effects of probenecid on behavioural and morphological markers in the orofacial formalin test of the rat. One hour after pre-treatment with vehicle or probenecid (1 mmol/kg body weight) intraperitoneally, 50µl 1.5% formalin solution or physiological saline was injected subcutaneously into the right whisker pad of rats. The rubbing activity directed to the injected whisker pad was then measured for a period of 45 minutes. Four hours after formalin injection, the caudal part of spinal trigeminal nucleus was removed and subjected to c-Fos and neuronal nitric oxide synthase (nNOS) immunohistochemistry and to interleukin-1ß and NAD(P)H: quinone oxidoreductase 1 (NQO1) Western blot. There was a significant decrease in formalin-induced biphasic behavioural response and c-Fos and nNOS immunoreactivity in the rats that were pre-treated with probenecid. However there were no alterations in expression of interleukin-1ß or NQO1 after formalin administration. Our results suggest that probenecid has an anti-nociceptive effect in the trigeminal inflammatory pain model. This effect may be through influencing the release of prostaglandin E2 or desensitizing the transient receptor potential channel subtype A member 1 or the transient receptor potential channel subtype V member 2 or the effect may be through modulating kynurenic acid levels in the central nervous system. Thus, probenecid might be a potential candidate for the treatment of trigeminal activation related pain conditions.


Assuntos
Analgésicos/farmacologia , Dor Facial/tratamento farmacológico , Probenecid/farmacologia , Animais , Modelos Animais de Doenças , Dor Facial/patologia , Dor Facial/fisiopatologia , Formaldeído , Injeções Intraperitoneais , Interleucina-1beta/metabolismo , Masculino , Atividade Motora , NAD(P)H Desidrogenase (Quinona)/metabolismo , Óxido Nítrico Sintase Tipo I/metabolismo , Medição da Dor , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos Sprague-Dawley , Núcleo Espinal do Trigêmeo/efeitos dos fármacos , Núcleo Espinal do Trigêmeo/metabolismo , Núcleo Espinal do Trigêmeo/patologia , Vibrissas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...