Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 28(21)2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37959723

RESUMO

Two approaches to the synthesis of para-menthene epoxide ((1S,5S,6R)-4) are developed. The first approach includes a reaction between chlorohydrin 7 and NaH in THF. The second involves the formation of epoxide in the reaction of corresponding diacetate 6 with sodium tert-butoxide. One possible mechanism of this reaction is proposed to explain unexpected outcomes in the regio- and stereospecificity of epoxide (1S,5S,6R)-4 formation. The epoxide ring in (1S,5S,6R)-4 is then opened by various S- and O-nucleophiles. This series of reactions allows for the stereoselective synthesis of diverse derivatives of the monoterpenoid Prottremine 1, a compound known for its antiparkinsonian activity, including promising antiparkinsonian properties.

2.
Int J Mol Sci ; 24(6)2023 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-36982914

RESUMO

Parkinson's disease is the second most common neurodegenerative disease. Unfortunately, there is still no definitive disease-modifying therapy. In our work, the antiparkinsonian potential of trans-epoxide (1S,2S,3R,4S,6R)-1-methyl-4-(prop-1-en-2-yl)-7-oxabicyclo [4.1.0]heptan-2,3-diol (E-diol) was analyzed in a rotenone-induced neurotoxicity model using in vitro, in vivo and ex vivo approaches. It was conducted as part of the study of the mitoprotective properties of the compound. E-diol has been shown to have cytoprotective properties in the SH-SY5Y cell line exposed to rotenone, which is associated with its ability to prevent the loss of mitochondrial membrane potential and restore the oxygen consumption rate after inhibition of the complex I function. Under the conditions of rotenone modeling of Parkinson's disease in vivo, treatment with E-diol led to the leveling of both motor and non-motor disorders. The post-mortem analysis of brain samples from these animals demonstrated the ability of E-diol to prevent the loss of dopaminergic neurons. Moreover, that substance restored functioning of the mitochondrial respiratory chain complexes and significantly reduced the production of reactive oxygen species, preventing oxidative damage. Thus, E-diol can be considered as a new potential agent for the treatment of Parkinson's disease.


Assuntos
Neuroblastoma , Doenças Neurodegenerativas , Fármacos Neuroprotetores , Doença de Parkinson , Animais , Humanos , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/etiologia , Doença de Parkinson/metabolismo , Rotenona/toxicidade , Rotenona/metabolismo , Monoterpenos/metabolismo , Doenças Neurodegenerativas/metabolismo , Linhagem Celular Tumoral , Neuroblastoma/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Mitocôndrias/metabolismo , Fenótipo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Fármacos Neuroprotetores/metabolismo
3.
Molecules ; 27(23)2022 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36500381

RESUMO

Parkinson's disease (PD) is the most common age-related movement disorder characterized by the progressive loss of nigrostriatal dopaminergic neurons. To date, PD treatment strategies are mostly based on dopamine replacement medicines, which can alleviate motor symptoms but do not slow down the progression of neurodegeneration. Thus, there is a need for disease-modifying PD therapies. The aim of this work was to evaluate the neuroprotective effects of the novel compound PA96 on dopamine neurons in vivo and in vitro, assess its ability to alleviate motor deficits in MPTP- and haloperidol-based PD models, as well as PK profile and BBB penetration. PA96 was synthesized from (1R,2R,6S)-3-methyl-6-(prop-1-en-2-yl) cyclohex-3-ene-1,2-diol (Prottremin) using the original three-step stereoselective procedure. We found that PA96: (1) supported the survival of cultured näive dopamine neurons; (2) supported the survival of MPP+-challenged dopamine neurons in vitro and in vivo; (3) had chemically appropriate properties (synthesis, solubility, etc.); (4) alleviated motor deficits in MPTP- and haloperidol-based models of PD; (5) penetrated the blood-brain barrier in vivo; and (6) was eliminated from the bloodstream relative rapidly. In conclusion, the present article demonstrates the identification of PA96 as a lead compound for the future development of this compound into a clinically used drug.


Assuntos
Intoxicação por MPTP , Fármacos Neuroprotetores , Doença de Parkinson , Animais , Camundongos , Humanos , Neurônios Dopaminérgicos , Intoxicação por MPTP/tratamento farmacológico , Monoterpenos/farmacologia , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Doença de Parkinson/tratamento farmacológico , Haloperidol/farmacologia , Substância Negra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...