Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Lab Invest ; 99(1): 4-16, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30258096

RESUMO

Nonalcoholic steatohepatitis (NASH) is the form of nonalcoholic fatty liver disease that can evolve into cirrhosis. Lifestyle modifications achieving 10% weight loss reverse NASH, but there are no effective approved drug treatments. We previously identified defective adaptive thermogenesis as a factor contributing to metabolic syndrome and hepatic steatosis. We have now tested whether increasing nonshivering thermogenesis can improve preexisting NASH in mice. In high-fat diet-fed foz/foz mice with established NASH, treatment with ß3AR agonist restored brown adipose tissue (BAT) function, decreased body weight, improved glucose tolerance, and reduced hepatic lipid content compared to untreated counterparts, but had no impact on liver inflammation or on nonalcoholic fatty liver disease activity score (NAS). Similarly, ß3AR agonist did not alter liver pathology in other steatohepatitis models, including MCD diet-fed diabetic obese db/db mice. Caloric restriction alone alleviated the hepatic inflammatory signature in foz/foz mice. Addition of a ß3AR agonist to mice subjected to caloric restriction enhanced weight loss and glucose tolerance, and improved liver steatosis, hepatocellular injury, and further reduced liver inflammation. These changes contributed to a significantly lower NAS score such as no (0/9) animals in this group fulfilled the criteria for NASH pathology compared to eight out of ten mice under caloric restriction alone. In conclusion, ß3AR agonist counteracts features of the metabolic syndrome and alleviates steatosis, but does not reverse NASH. However, when coupled with weight loss therapy, BAT stimulation provides additional therapeutic advantages and reverses NASH.


Assuntos
Acetanilidas/uso terapêutico , Tecido Adiposo Marrom/efeitos dos fármacos , Agonistas de Receptores Adrenérgicos beta 3/uso terapêutico , Dioxóis/uso terapêutico , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Tiazóis/uso terapêutico , Acetanilidas/farmacologia , Agonistas de Receptores Adrenérgicos beta 3/farmacologia , Animais , Restrição Calórica , Dieta Hiperlipídica/efeitos adversos , Dioxóis/farmacologia , Avaliação Pré-Clínica de Medicamentos , Fígado/efeitos dos fármacos , Síndrome Metabólica/tratamento farmacológico , Camundongos , Hepatopatia Gordurosa não Alcoólica/dietoterapia , Hepatopatia Gordurosa não Alcoólica/etiologia , Tiazóis/farmacologia
2.
Hepatol Commun ; 1(6): 524-537, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-29404476

RESUMO

IVA337 is a pan-peroxisome proliferator-activated receptor (PPAR) agonist with moderate and well-balanced activity on the three PPAR isoforms (α, γ, δ). PPARs are regulators of lipid metabolism, inflammation, insulin resistance, and fibrogenesis. Different single or dual PPAR agonists have been investigated for their therapeutic potential in nonalcoholic steatohepatitis (NASH), a chronic liver condition in which steatosis coexists with necroinflammation, potentially leading to liver fibrosis and cirrhosis. Clinical results have demonstrated variable improvements of histologically assessed hepatic lesions depending on the profile of the tested drug, suggesting that concomitant activation of the three PPAR isoforms would translate into a more substantial therapeutic outcome in patients with NASH. We investigated the effects of IVA337 on several preclinical models reproducing the main metabolic and hepatic features associated with NASH. These models comprised a diet-induced obesity model (high-fat/high-sucrose diet); a methionine- and choline-deficient diet; the foz/foz model; the CCl4-induced liver fibrosis model (prophylactic and therapeutic) and human primary hepatic stellate cells. IVA337 normalized insulin sensitivity while controlling body weight gain, adiposity index, and serum triglyceride increases; it decreased liver steatosis, inflammation, and ballooning. IVA337 demonstrated preventive and curative effects on fibrosis in the CCl4 model and inhibited proliferation and activation of human hepatic stellate cells, the key cells driving liver fibrogenesis in NASH. Moreover, IVA337 inhibited the expression of (pro)fibrotic and inflammasome genes while increasing the expression of ß-oxidation-related and fatty acid desaturation-related genes in both the methionine- and choline-deficient diet and the foz/foz model. For all models, IVA337 displayed an antifibrotic efficacy superior to selective PPARα, PPARδ, or PPARγ agonists. Conclusion: The therapeutic potential of IVA337 for the treatment of patients with NASH is supported by our data. (Hepatology Communications 2017;1:524-537).

3.
Clin Sci (Lond) ; 131(4): 285-296, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-27803297

RESUMO

Fatty liver diseases are complications of the metabolic syndrome associated with obesity, insulin resistance and low grade inflammation. Our aim was to uncover mechanisms contributing to hepatic complications in this setting. We used foz/foz mice prone to obesity, insulin resistance and progressive fibrosing non-alcoholic steatohepatitis (NASH). Foz/foz mice are hyperphagic but wild-type (WT)-matched calorie intake failed to protect against obesity, adipose inflammation and glucose intolerance. Obese foz/foz mice had similar physical activity level but reduced energy expenditure. Thermogenic adaptation to high-fat diet (HFD) or to cold exposure was severely impaired in foz/foz mice compared with HFD-fed WT littermates due to lower sympathetic tone in their brown adipose tissue (BAT). Intermittent cold exposure (ICE) restored BAT function and thereby improved glucose tolerance, decreased fat mass and liver steatosis. We conclude that failure of BAT adaptation drives the metabolic complications of obesity in foz/foz mice, including development of liver steatosis. Induction of endogenous BAT function had a significant therapeutic impact on obesity, glucose tolerance and liver complications and is a potential new avenue for therapy of non-alcoholic fatty liver disease (NAFLD).


Assuntos
Síndrome Metabólica/fisiopatologia , Hepatopatia Gordurosa não Alcoólica/fisiopatologia , Obesidade/fisiopatologia , Termogênese/fisiologia , Tecido Adiposo Marrom/fisiopatologia , Animais , Restrição Calórica , Temperatura Baixa , Modelos Animais de Doenças , Ingestão de Energia , Metabolismo Energético/fisiologia , Intolerância à Glucose/fisiopatologia , Masculino , Síndrome Metabólica/etiologia , Camundongos Obesos , Hepatopatia Gordurosa não Alcoólica/etiologia , Obesidade/complicações , Consumo de Oxigênio/fisiologia , Condicionamento Físico Animal/fisiologia
4.
Obesity (Silver Spring) ; 25(1): 155-165, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27804232

RESUMO

OBJECTIVE: Nonalcoholic steatohepatitis (NASH) is the outcome of interactions between overnutrition, energy metabolism, and adipose function. Obeticholic acid (OCA) improves steatosis in patients but for unknown reasons does not resolve NASH pathology. This study therefore investigated OCA effects in Wt mice, which develop obesity with atherogenic dietary feeding, and appetite-dysregulated, Alms1 mutant foz/foz mice fed the same diet, which develop metabolic obesity and diabetes. METHODS: OCA (1 mg/kg) was administered orally to female foz/foz mice and Wt littermates from weaning until 28 weeks. Adipose indices, glucose tolerance, and fatty liver pathology were studied. Experiments were repeated with OCA 10 mg/kg. RESULTS: OCA reduced body weight and hepatic lipids and improved glucose disposal only in Wt mice. OCA limited Wt adipose expansion, altered morphometry in favor of small adipocytes, enhanced expression of genes indicating adipose browning, and reduced crown-like structure number in visceral adipose tissue. foz/foz mice showed more crown-like structures in all compartments; OCA failed to alter adipose morphometry, browning, inflammation, or improve NASH severity, even at 10 mg/kg. CONCLUSIONS: OCA improved adipose indices, glucose tolerance, and steatosis in a milder metabolic phenotype but failed to improve these factors in morbidly obese diabetic mice. These results help explain OCA's limited efficacy to reverse human NASH.


Assuntos
Adiposidade/efeitos dos fármacos , Ácido Quenodesoxicólico/análogos & derivados , Fígado Gorduroso/tratamento farmacológico , Inflamação/tratamento farmacológico , Obesidade/tratamento farmacológico , Animais , Ácido Quenodesoxicólico/farmacologia , Dieta Aterogênica , Modelos Animais de Doenças , Feminino , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Camundongos Obesos , Aumento de Peso
5.
Clin Sci (Lond) ; 129(11): 933-49, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26359253

RESUMO

BAT (brown adipose tissue) is the main site of thermogenesis in mammals. It is essential to ensure thermoregulation in newborns. It is also found in (some) adult humans. Its capacity to oxidize fatty acids and glucose without ATP production contributes to energy expenditure and glucose homoeostasis. Brown fat activation has thus emerged as an attractive therapeutic target for the treatment of obesity and the metabolic syndrome. In the present review, we integrate the recent advances on the metabolic role of BAT and its relation with other tissues as well as its potential contribution to fighting obesity and the metabolic syndrome.


Assuntos
Adipócitos Marrons/efeitos dos fármacos , Tecido Adiposo Marrom/efeitos dos fármacos , Fármacos Antiobesidade/uso terapêutico , Metabolismo Energético/efeitos dos fármacos , Síndrome Metabólica/tratamento farmacológico , Obesidade/tratamento farmacológico , Adipócitos Marrons/metabolismo , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Marrom/fisiopatologia , Animais , Desenho de Fármacos , Ácidos Graxos/metabolismo , Glucose/metabolismo , Humanos , Síndrome Metabólica/metabolismo , Síndrome Metabólica/fisiopatologia , Obesidade/metabolismo , Obesidade/fisiopatologia , Oxirredução , Transdução de Sinais
6.
Clin Sci (Lond) ; 127(7): 507-18, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24766485

RESUMO

Non-alcoholic fatty liver (steatosis) and steatohepatitis [non-alcoholic steatohepatitis (NASH)] are hepatic complications of the metabolic syndrome. Endoplasmic reticulum (ER) stress is proposed as a crucial disease mechanism in obese and insulin-resistant animals (such as ob/ob mice) with simple steatosis, but its role in NASH remains controversial. We therefore evaluated the role of ER stress as a disease mechanism in foz/foz mice, which develop both the metabolic and histological features that mimic human NASH. We explored ER stress markers in the liver of foz/foz mice in response to a high-fat diet (HFD) at several time points. We then evaluated the effect of treatment with an ER stress inducer tunicamycin, or conversely with the ER protectant tauroursodeoxycholic acid (TUDCA), on the metabolic and hepatic features. foz/foz mice are obese, glucose intolerant and develop NASH characterized by steatosis, inflammation, ballooned hepatocytes and apoptosis from 6 weeks of HFD feeding. This was not associated with activation of the upstream unfolded protein response [phospho-eukaryotic initiation factor 2α (eIF2α), inositol-requiring enzyme 1α (IRE1α) activity and spliced X-box-binding protein 1 (Xbp1)]. Activation of c-Jun N-terminal kinase (JNK) and up-regulation of activating transcription factor-4 (Atf4) and CCAAT/enhancer-binding protein-homologous protein (Chop) transcripts were however compatible with a 'pathological' response to ER stress. We tested this by using intervention experiments. Induction of chronic ER stress failed to worsen obesity, glucose intolerance and NASH pathology in HFD-fed foz/foz mice. In addition, the ER protectant TUDCA, although reducing steatosis, failed to improve glucose intolerance, hepatic inflammation and apoptosis in HFD-fed foz/foz mice. These results show that signals driving hepatic inflammation, apoptosis and insulin resistance are independent of ER stress in obese diabetic mice with steatohepatitis.


Assuntos
Dieta Hiperlipídica , Estresse do Retículo Endoplasmático , Fígado Gorduroso/metabolismo , Resistência à Insulina , Animais , Glicemia , Proteínas de Ciclo Celular , Proteínas de Ligação a DNA/genética , Fígado Gorduroso/patologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos Obesos , Hepatopatia Gordurosa não Alcoólica , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...