Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mater Chem C Mater ; 12(16): 5836-5848, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38680544

RESUMO

This study explores the potential of combining periodic mesoporous organosilicas (PMOs) with a fluorescent dye to develop a ratiometric thermometry system with enhanced stability, sensitivity, and biocompatibility. PMOs, ordered porous materials known for their stability and versatility, serve as an ideal platform. Curcumin, a natural polyphenol and fluorescent dye, is incorporated into PMOs to develop curcumin-functionalized PMOs (C-PMO) and curcumin-pyrazole-functionalized PMOs (CP-PMO) via hydrolysis and co-condensation. These PMOs exhibit temperature-dependent fluorescence properties. The next step involves encapsulating rhodamine B (RhB) dye within the PMO pores to create dual-emitting PMO@dye nanocomposites, followed by a lipid bilayer (LB) coating to enhance biocompatibility and dye retention. Remarkably, within the physiological temperature range, C-PMO@RhB@LB and CP-PMO@RhB@LB demonstrate noteworthy maximum relative sensitivity (Sr) values of up to 1.69 and 2.60% K-1, respectively. This approach offers versatile means to create various ratiometric thermometers by incorporating different fluorescent dyes, holding promise for future temperature sensing applications.

2.
Mater Horiz ; 10(12): 5684-5693, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-37791623

RESUMO

Despite the substantial progress made, the responsiveness of thermo-responsive materials upon various thermal fields is still restricted to monochromatic visualization with single-wavelength light emission. This stems from a poor understanding of the photophysical processes within the materials and the unvarying optical performance of luminescent centers' response to various ambient temperatures. Conventional techniques to assess the inhomogeneities of thermal fields can be time-consuming, require specialized equipment and suffer from inaccuracy due to the inevitable interference from background signals, especially at high temperature. To this end, we overcome these limitations for the first time, to flexibly visualize temperature inhomogeneities by developing a thermochromic smart material, SrGa12-xAlxO19:Dy3+. Two distinct modes of thermochromic properties (steady-state temperature-dependent luminescence and thermally stimulated luminescence) are investigated. It is revealed that the abundant colors (from yellow, green to red) and amazing color-changing features are due to the superior optical integration of the host (SrGa12-xAlxO19) and dopant (Dy3+) emissions under specific thermal stimulations. We suggest that this thermo-responsive smart material can be used to realize highly efficient and simple visualization of invisible thermal distribution in industry and beyond.

3.
Materials (Basel) ; 16(19)2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37834608

RESUMO

This study aims to investigate the optical properties of multiple neodymium-doped gadolinium compounds as a means to examine their eligibility as optical probes for fluorescence imaging. GdVO4, GdPO4, GdAlO3, Gd2SiO5 and Gd3Ga5O12 (GGG) samples were synthesized through solid-state reactions with varying neodymium doping levels to compare their optical properties in great detail. The optimal doping concentration was generally found to be approximately 2%. Furthermore, the luminescence lifetime, which is a valuable parameter for time-gated imaging, was determined to range from 276 down to 14 µs for the highest doping concentrations, resulting from energy transfer and migration assisted decay.

4.
ACS Appl Mater Interfaces ; 15(29): 35092-35106, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37462114

RESUMO

Covalent organic frameworks (COFs) are emerging as a new class of photoactive organic semiconductors, which possess crystalline ordered structures and high surface areas. COFs can be tailor-made toward specific (photocatalytic) applications, and the size and position of their band gaps can be tuned by the choice of building blocks and linkages. However, many types of building blocks are still unexplored as photocatalytic moieties and the scope of reactions photocatalyzed by COFs remains quite limited. In this work, we report the synthesis and application of two bipyridine- or phenylpyridine-based COFs: TpBpyCOF and TpPpyCOF. Due to their good photocatalytic properties, both materials were applied as metal-free photocatalysts for the tandem aerobic oxidation/Povarov cyclization and α-oxidation of N-aryl glycine derivatives, with the bipyridine-based TpBpyCOF exhibiting the highest activity. By expanding the range of reactions that can be photocatalyzed by COFs, this work paves the way toward the more widespread application of COFs as metal-free heterogeneous photocatalysts as a convenient alternative for commonly used homogeneous (metal-based) photocatalysts.

5.
Nanomaterials (Basel) ; 12(19)2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36234406

RESUMO

Phthalocyanines (Pcs) are often used in photosensitization of titanium(IV) oxide, a commonly employed photocatalyst, as such an approach holds the promise of obtaining highly stable and efficient visible light-harvesting materials. Herein, we report on the preparation, characterization and photoactivity of a series of composites based on TiO2 and peripherally modified metallophthalocyanines: either tetrasulfonated or 4,4',4'',4'''-tetraazaphthalocyanines, with either copper(II), nickel(II) or zinc(II) as the central metal ion. Physicochemical characterization was performed using UV-Vis diffuse reflectance spectroscopy, hydrodynamic particle-size analysis, surface-area analysis using N2 adsorption-desorption measurements and thermogravimetry combined with differential scanning calorimetry. The band-gap energy values were lower for the composites with peripherally modified phthalocyanines than for the commercial TiO2 P25 or the unsubstituted zinc(II) phthalocyanine-grafted TiO2. TG-DSC results confirmed that the chemical deposition, used for the preparation of Pc/TiO2 composites, is a simple and efficient method for TiO2 surface modification, as all the Pc load was successfully grafted on TiO2. The photocatalytic potential of the Pc/TiO2 materials was assessed in the photocatalytic removal of sulfamethoxazole-a commonly used antibacterial drug of emerging ecological concern. To compare the activity of the materials in different conditions, photodegradation tests were conducted both in water and in an organic medium.

6.
Nanotechnology ; 33(46)2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-35921794

RESUMO

We report the design and one-pot synthesis of Ag-doped BiVO4embedded in reduced graphene oxide (BiVO4:Ag/rGO) nanocomposites via a hydrothermal processing route. The binary heterojunction photocatalysts exhibited high efficiency for visible light degradation of model dyes and were correspondingly used for the preparation of photocatalytic membranes using polyvinylidene fluoride (PVDF) or polyethylene glycol (PEG)-modified polyimide (PI), respectively. The surface and cross-section images combined with elemental mapping illustrated the effective distribution of the nanocomposites within the polymeric membranes. Photocatalytic degradation efficiencies of 61% and 70% were achieved after 5 h of visible light irradiation using BiVO4:Ag/rGO@PVDF and BiVO4:Ag/rGO@PI (PEG-modified) systems, respectively. The beneficial photocatalytic performance of the BiVO4:Ag/rGO@PI (PEG-modified) membrane is explained by the higher hydrophilicity due to the PEG modification of the PI membrane. This work may provide a rational and effective strategy to fabricate highly efficient photocatalytic nanocomposite membranes with well-contacted interfaces for environmental purification.

7.
Molecules ; 26(21)2021 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-34770991

RESUMO

Photocatalytic nanomaterials, using only light as the source of excitation, have been developed for the breakdown of volatile organic compounds (VOCs) in air for a long time. It is a tough challenge to immobilize these powder photocatalysts and prevent their entrainment with the gas stream. Conventional methods for making stable films typically require expensive deposition equipment and only allow the deposition of very thin layers with limited photocatalytic performance. The present work presents an alternative approach, using the combination of commercially available photocatalytic nanopowders and a polymer or inorganic sol-gel-based matrix. Analysis of the photocatalytic degradation of ethanol was studied for these layers on metallic substrates, proving a difference in photocatalytic activity for different types of stable layers. The sol-gel-based TiO2 layers showed an improved photocatalytic activity of the nanomaterials compared with the polymer TiO2 layers. In addition, the used preparation methods require only a limited amount of photocatalyst, little equipment, and allow easy upscaling.

8.
Nanotechnology ; 32(47)2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34388747

RESUMO

In recent years, nanoparticles have come under close scrutiny for their possible health and environmental issues, making them less attractive for photocatalytic applications in air or water purification. Replacing free nano-powders with active and stable films is thus a fundamental step towards developing effective photocatalytic devices. Aluminum represents a cheap and technologically-relevant substrate, but its photocatalytic applications have been hampered by adhesion issues and metal ion diffusion within the photocatalytic layer. In this work, the use of silica interlayers is investigated as a strategy to promote adhesion, efficiency and reusability of TiO2films deposited on aluminum plates. Films were prepared from stable titania sols to avoid the use of nano-powders. Aluminum substrates with different surface morphology were investigated and the role of the silica interlayer thickness was studied. Films were extensively characterized, studying their structure, morphology, optical properties, adhesion and hardness. Self-cleaning properties were studied with respect to their superhydrophilicity and ability to resist fouling via alkylsilanes. Photocatalytic degradation tests were carried out using both volatile organic compounds and NOx, also in recycle tests. The presence of the silica interlayer proved crucial to promote the film robustness and photocatalytic activity. The substrate morphology determined the optimal interlayer thickness, especially in terms of the film reusability.

9.
ACS Appl Mater Interfaces ; 13(8): 10249-10256, 2021 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-33617215

RESUMO

The prospect of introducing tunable electric conductivity in metal-organic coordination polymers is of high interest for nanoelectronic applications. As the electronic properties of these materials are strongly dependent on their microstructure, the assembly of coordination polymers into thin films with well-controlled growth direction and thickness is crucial for practical devices. Here, we report the deposition of one-dimensional (1D) coordination polymer thin films of N,N'-dimethyl dithiooxamidato-copper by atomic/molecular layer deposition. High out-of-plane ordering is observed in the resulting thin films suggesting the formation of a well-ordered secondary structure by the parallel alignment of the 1D polymer chains. We show that the electrical conductivity of the thin films is highly dependent on their oxidation state. The as-deposited films are nearly insulating with an electrical conductivity below 10-10 S cm-1 with semiconductor-like temperature dependency. Partial reduction with H2 at elevated temperature leads to an increase in the electrical conductivity by 8 orders of magnitude. In the high-conductance state, metallic behavior is observed over the temperature range of 2-300 K. Density functional theory calculations indicate that the metallic behavior originates from the formation of a half-filled energy band intersecting the Fermi level with the conduction pathway formed by the Cu-S-Cu interaction between neighboring polymer chains.

10.
Dalton Trans ; 50(1): 229-239, 2021 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-33295910

RESUMO

A Yb3+ free self-sensitized Er2WO6 phosphor has been synthesized via a solid-state reaction method. The phosphor material, Er2WO6, has a monoclinic crystal structure with space group P2/c (13). The deconvoluted high-resolution X-ray photoelectron spectra of all the core elements in the Er2WO6 phosphor material were explored. The highly resolved absorption peaks in the ultra-violet, visible and near-infra-red (NIR) regions of the diffuse reflectance spectrum were due to the Stark-splitting of the 4f energy levels of the Er3+ ions. Under 980 nm NIR laser excitation, the Er2WO6 phosphor showed an intense up-converted red emission at 677 nm due to the 4F9/2→4I15/2 transitions of the Er3+ ions. The cross-relaxation and resonance energy transfer process involved in the key intermediate 4F3/2 and 4F5/2 levels of the Er3+ and their role in generating red emissions were investigated. The laser pump power versus upconversion intensity plot showed a slope with an n value <1 and the possible reasons behind this behavior were investigated. The photoluminescence properties of the Er2WO6 phosphor in the visible and NIR region were further analyzed. The potential application of the phosphor as a marker in latent fingerprint detection was also evaluated.

11.
Materials (Basel) ; 13(16)2020 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-32806721

RESUMO

Many medical imaging techniques use some form of ionizing radiation. This radiation is not only potentially harmful for the patient, but also for the medical personnel. An alternative imaging technique uses near-infrared (NIR) emitting luminescent particles as tracers. If the luminescent probes are excited inside the body, autofluorescence from the biological tissues is also induced. This problem can be circumvented by using time-gated imaging. Hereby, the light collection only starts when the fluorescence of the tissue has decayed. This requires particles showing both excitation and emission in the near-infrared and a long decay time so that they can be used in time-gated imaging. In this work, Nd-doped GdVO4 NIR emitting particles were prepared using solid state reaction. Particles could be efficiently excited at 808 nm, right in the first transparency window for biological tissues, emitted in the second transparency window at around 1064 nm, and showed a decay time of the order of 70 µs, sufficiently long for time-gating. By using a Gd-containing host, these particles could be ideally suited for multimodal optical/magnetic imaging after size reduction and surface functionalization.

12.
Phys Rev Lett ; 125(3): 033001, 2020 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-32745429

RESUMO

Laser excitation and x-ray spectroscopy are combined to settle a long-standing question in persistent luminescence. A reversible electron transfer is demonstrated, controlled by light and showing the same kinetics as the persistent luminescence. Exposure to violet light induces charging by oxidation of the excited Eu^{2+} while Dy^{3+} is simultaneously reduced. Oppositely, detrapping of Dy^{2+} occurs at ambient temperature or by infrared illumination, yielding afterglow or optically stimulated luminescence, respectively.

13.
Nanomaterials (Basel) ; 9(12)2019 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-31835744

RESUMO

Tetravalent manganese doped phosphors are emerging as a new class of efficient near-infrared emitters for applications in a variety of areas, such as bioimaging and night-vision surveillance. Novel double perovskite-type La2MgGeO6:Mn4+ phosphors were successfully prepared using a microwave-assisted energy-saving solid state method. This simple technique involving the use of a microwave susceptor allows for a reduction of the preparation time compared to a conventional solid state reaction. The samples were investigated using powder X-ray diffraction, scanning electron microscopy, as well as energy-dispersive X-ray spectroscopy mapping, photoluminescence excitation/emission spectroscopy, persistent luminescence decay and temperature-dependent photoluminescence analysis. Substitution between isovalent Mn4+ and Ge4+ can be achieved without additional charge compensators in this germanate-based phosphor, which provides strong emission in the near-infrared spectral region, assigned to the characteristic transitions of tetravalent manganese ions. Additionally, the double perovskite-type germanate phosphor exhibits excellent luminescence thermal stability. Moreover, the spectroscopic properties, excitation wavelength-dependent and temperature-dependent persistent luminescence were studied. A series of thermoluminescence measurements were presented trying to give clear information on the charging process, afterglow behavior and the nature of the traps responsible for the persistent luminescence. The present investigation expands the range of available promising near-infrared emitting persistent phosphors for medical imaging.

14.
Nanomaterials (Basel) ; 9(11)2019 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-31652914

RESUMO

While SmS thin films show an irreversible semiconductor-metal transition upon application of pressure, the switching characteristics can be modified by alloying with other elements, such as europium. This manuscript reports on the resistance response of tri-layer SmS/EuS/SmS thin films upon applying pressure and on the correlation between the resistance response and the interdiffusion between the layers. SmS thin films were deposited by e-beam sublimation of Sm in an H2S atmosphere, while EuS was directly sublimated by e-beam from EuS. Structural properties of the separate thin films were first studied before the deposition of the final nanocomposite tri-layer system. Piezoresistance measurements demonstrated two sharp resistance drops. The first drop, at lower pressure, corresponds to the switching characteristic of SmS. The second drop, at higher pressure, is attributed to EuS, partially mixed with SmS. This behavior provides either a well-defined three or two states system, depending on the degree of mixing. Depth profiling using x-ray photoelectron spectroscopy (XPS) revealed partial diffusion between the compounds upon deposition at a substrate temperature of 400 °C. Thinner tri-layer systems were also deposited to provide more interdiffusion. A higher EuS concentration led to a continuous transition as a function of pressure. This study shows that EuS-modified SmS thin films are possible systems for piezo-electronic devices, such as memory devices, RF (radio frequency) switches and piezoresistive sensors.

15.
Sensors (Basel) ; 19(20)2019 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-31614444

RESUMO

Samarium monosulfide (SmS) is a switchable material, showing a pressure-induced semiconductor to metal transition. As such, it can be used in different applications such as piezoresistive sensors and memory devices. In this work, we present how e-beam sublimation of samarium metal in a reactive atmosphere can be used for the deposition of semiconducting SmS thin films on 150 mm diameter silicon wafers. The deposition parameters influencing the composition and properties of the thin films are evaluated, such as the deposition rate of Sm metal, the substrate temperature and the H2S partial pressure. We then present the changes in the optical, structural and electrical properties of this compound after the pressure-induced switching to the metallic state. The back-switching and stability of SmS thin films are studied as a function of temperature and atmosphere via in-situ X-ray diffraction. The thermally induced back switching initiates at 250 °C, while above 500 °C, Sm2O2S is formed. Lastly, we explore the possibility to determine the valence state of the samarium ions by means of X-ray photoelectron spectroscopy.

16.
Sci Rep ; 9(1): 10517, 2019 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-31324845

RESUMO

Development of persistent luminescent materials has drawn continuous attention in recent years in view of their potential applications in the fields of security night-vision signage, in vivo bio-imaging and optical data storage. Currently, the normative evaluation of a new persistent luminescent material is focused on the light emission spectrum, the afterglow decay curve and the total duration time of the persistent luminescence. In this paper, we investigate the temperature dependent persistent luminescence in some well-known persistent phosphors and relate this to their thermoluminescence properties. The concept of the optimum working temperature is proposed as a new means for evaluating persistent phosphors. It is shown that there is a clear relation between the efficient temperature range of the afterglow output and the thermoluminescence glow curve. The experimental work is supported by simulations of thermoluminescence and afterglow characteristics. The concept of the optimum working temperature for persistent phosphors can be used as an evaluative criterion for applications in various working environments.

17.
Nanomaterials (Basel) ; 9(1)2019 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-30669532

RESUMO

A screening study on seven photocatalysts was performed to identify the best candidate for pharmaceutical products degradation in water. Photocatalysts were deposited as thin films through a sol-gel process and subsequent dip-coating on glass slides. The efficiency of each photocatalyst was assessed through the degradation of methylene blue first, and then, through the degradation of 15 different pharmaceutical products. Two main types of synthesis methods were considered: aqueous syntheses, where the reaction takes place in water, and organic syntheses, where reactions take place in an organic solvent and only a stoichiometric amount of water is added to the reaction medium. Photocatalysts synthesized via aqueous sol-gel routes showed relatively lower degradation efficiencies; however, the organic route required a calcination step at high temperature to form the photoactive crystalline phase, while the aqueous route did not. The best performances for the degradation of pharmaceuticals arose when Evonik P25 and silver nanoparticles were added to TiO2, which was synthesized using an organic solvent. In the case of methylene blue degradation, TiO2 modified with Evonik P25 and TiO2 doped with MnO2 nanoparticles were the two best candidates.

18.
Phys Chem Chem Phys ; 20(48): 30455-30465, 2018 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-30506069

RESUMO

Persistent phosphors are increasingly investigated due to their potential applications in various fields, such as safety signage, dosimetry and in vivo imaging. These materials act as optical batteries that store and gradually release energy supplied during optical charging. As the energy is stored, or 'trapped', at specific defect sites in the host lattice, a clear understanding of the defects and trapping mechanisms in these materials is important for systematic improvement of their properties. Here, the thermoluminescence and afterglow properties of the near-infrared (NIR) emitting persistent phosphor LiGa5O8:Cr3+ (LGO:Cr) are studied. This phosphor is used as a model system for illustrating a more general approach to reliably derive trap depth distributions in persistent luminescent and storage materials. The combination of the Tstop-Tmax method with initial rise analysis is used to experimentally determine the presence of a broad distribution of trapping states. Computerized glow curve fitting is subsequently used to extract the relevant trapping parameters of the system in a rigorous, consistent manner, by fitting all the experimentally recorded data simultaneously. The resulting, single set of model parameters is able to describe all measured thermoluminescence and afterglow data and hence can be used to predict afterglow and storage properties of the phosphor under various conditions. The methods to analyze and describe the trap structure of the persistent phosphor LGO:Cr are straightforwardly applicable for other persistent and storage phosphors and result in a reliable determination of the relevant trapping parameters of a given material.

19.
Molecules ; 23(11)2018 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-30424499

RESUMO

The increase in environmental pollution due to the excessive use of fossil fuels has prompted the development of alternative and sustainable energy sources. As an abundant and sustainable energy, solar energy represents the most attractive and promising clean energy source for replacing fossil fuels. Metal organic frameworks (MOFs) are easily constructed and can be tailored towards favorable photocatalytic properties in pollution degradation, organic transformations, CO2 reduction and water splitting. In this review, we first summarize the different roles of MOF materials in the photoredox chemical systems. Then, the typical applications of MOF materials in heterogeneous photocatalysis are discussed in detail. Finally, the challenges and opportunities in this promising field are evaluated.


Assuntos
Estruturas Metalorgânicas , Processos Fotoquímicos , Catálise , Oxirredução , Energia Solar , Luz Solar , Água/química
20.
ACS Appl Mater Interfaces ; 10(22): 18845-18856, 2018 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-29750494

RESUMO

Traditional light sources, e.g., incandescent and fluorescent lamps, are currently being replaced by white light-emitting diodes (wLEDs) because of their improved efficiency, prolonged lifetime, and environmental friendliness. Much effort has recently been spent to the development of Mn4+-doped fluoride phosphors that can enhance the color gamut in displays and improve the color rendering index, luminous efficacy of the radiation, and correlated color temperature of wLEDs used for lighting. Purity, stability, and degradation of fluoride phosphors are, however, rarely discussed. Nevertheless, the typical wet chemical synthesis routes (involving hydrogen fluoride (HF)) and the large variety of possible Mn valence states often lead to impurities that drastically influence the performance and stability of these phosphors. In this article, the origins and consequences of impurities formed during synthesis and aging of K2SiF6:Mn4+ are revealed. Both crystalline impurities such as KHF2 and ionic impurities such as Mn3+ are found to affect the phosphor performance. While Mn3+ mainly influences the optical absorption behavior, KHF2 can affect both the optical performance and chemical stability of the phosphor. Moisture leads to decomposition of KHF2, forming HF and amorphous hydrated potassium fluoride. As a consequence of hydrate formation, significant amounts of water can be absorbed in impure phosphor powders containing KHF2, facilitating the hydrolysis of [MnF6]2- complexes and affecting the optical absorption of the phosphors. Strategies are discussed to identify impurities and to achieve pure and stable phosphors with internal quantum efficiencies of more than 90%.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...