Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Water Resour Res ; 56(7): e2019WR026475, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32999509

RESUMO

The water surface expression of liftoff and its dependence on discharge are examined using numerical simulations with the Regional Ocean Modeling System (ROMS). Liftoff is the process by which buoyant river water separates from the bed and flows over denser saltwater. During low-discharge conditions liftoff occurs in the river and is accompanied by a change in the surface slope. During high-discharge conditions liftoff occurs outside the mouth and generates a ridge on the water surface. The location and height of the ridge can be described by analytical equations in terms of discharge, shelf slope, and river mouth aspect ratio. The offshore distance and height of the ridge are proportional to the river discharge and vary inversely with river mouth aspect ratio. For steep shelf slopes liftoff occurs close to the river mouth and generates a large ridge. The ridge is modified, but not eliminated, by the presence of tides. The water surface slope change at the ridge peak is large enough to be detected by the upcoming Surface Water and Ocean Topography (SWOT) altimeter and can be used to identify the liftoff location during high discharge. However, during low discharge the water surface slope change at the liftoff location is too small to be detected by SWOT. These results indicate that remote measurements of the presence or absence of the ridge may be useful to distinguish between low and high flows, and remote measurements of the ridge location or height could be used to estimate freshwater discharge.

2.
Nature ; 567(7746): 87-90, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30842639

RESUMO

Over the past decade, the ability to reduce the dimensions of fluidic devices to the nanometre scale (by using nanotubes1-5 or nanopores6-11, for example) has led to the discovery of unexpected water- and ion-transport phenomena12-14. More recently, van der Waals assembly of two-dimensional materials15 has allowed the creation of artificial channels with ångström-scale precision16. Such channels push fluid confinement to the molecular scale, wherein the limits of continuum transport equations17 are challenged. Water films on this scale can rearrange into one or two layers with strongly suppressed dielectric permittivity18,19 or form a room-temperature ice phase20. Ionic motion in such confined channels21 is affected by direct interactions between the channel walls and the hydration shells of the ions, and water transport becomes strongly dependent on the channel wall material22. We explore how water and ionic transport are coupled in such confinement. Here we report measurements of ionic fluid transport through molecular-sized slit-like channels. The transport, driven by pressure and by an applied electric field, reveals a transistor-like electrohydrodynamic effect. An applied bias of a fraction of a volt increases the measured pressure-driven ionic transport (characterized by streaming mobilities) by up to 20 times. This gating effect is observed in both graphite and hexagonal boron nitride channels but exhibits marked material-dependent differences. We use a modified continuum framework accounting for the material-dependent frictional interaction of water molecules, ions and the confining surfaces to explain the differences observed between channels made of graphene and hexagonal boron nitride. This highly nonlinear gating of fluid transport under molecular-scale confinement may offer new routes to control molecular and ion transport, and to explore electromechanical couplings that may have a role in recently discovered mechanosensitive ionic channels23.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...