Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genet Med ; 26(7): 101143, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38641995

RESUMO

PURPOSE: Neurodevelopmental disorders exhibit clinical and genetic heterogeneity, ergo manifest dysfunction in components of diverse cellular pathways; the precise pathomechanism for the majority remains elusive. METHODS: We studied 5 affected individuals from 3 unrelated families manifesting global developmental delay, postnatal microcephaly, and hypotonia. We used exome sequencing and prioritized variants that were subsequently characterized using immunofluorescence, immunoblotting, pulldown assays, and RNA sequencing. RESULTS: We identified biallelic variants in ZFTRAF1, encoding a protein of yet unknown function. Four affected individuals from 2 unrelated families segregated 2 homozygous frameshift variants in ZFTRAF1, whereas, in the third family, an intronic splice site variant was detected. We investigated ZFTRAF1 at the cellular level and signified it as a nucleocytoplasmic protein in different human cell lines. ZFTRAF1 was completely absent in the fibroblasts of 2 affected individuals. We also identified 110 interacting proteins enriched in mRNA processing and autophagy-related pathways. Based on profiling of autophagy markers, patient-derived fibroblasts show irregularities in the protein degradation process. CONCLUSION: Thus, our findings suggest that biallelic variants of ZFTRAF1 cause a severe neurodevelopmental disorder.

2.
Front Endocrinol (Lausanne) ; 14: 1107339, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37223044

RESUMO

The vertebral column, with the centra as its iteratively arranged building blocks, represents the anatomical key feature of the vertebrate phylum. In contrast to amniotes, where vertebrae are formed from chondrocytes and osteoblasts deriving from the segmentally organized neural crest or paraxial sclerotome, teleost vertebral column development is initiated by chordoblasts of the primarily unsegmented axial notochord, while sclerotomal cells only contribute to later steps of vertebrae formation. Yet, for both mammalian and teleostean model systems, unrestricted signaling by Bone Morphogenetic Proteins (BMPs) or retinoic acid (RA) has been reported to cause fusions of vertebral elements, while the interplay of the two signaling processes and their exact cellular targets remain largely unknown. Here, we address this interplay in zebrafish, identifying BMPs as potent and indispensable factors that, as formerly shown for RA, directly signal to notochord epithelial cells/chordoblasts to promote entpd5a expression and thereby metameric notochord sheath mineralization. In contrast to RA, however, which promotes sheath mineralization at the expense of further collagen secretion and sheath formation, BMP defines an earlier transitory stage of chordoblasts, characterized by sustained matrix production/col2a1 expression and concomitant matrix mineralization/entpd5a expression. BMP-RA epistasis analyses further indicate that RA can only affect chordoblasts and their further progression to merely mineralizing cells after they have received BMP signals to enter the transitory col2a1/entpd5a double-positive stage. This way, both signals ensure consecutively for proper mineralization of the notochord sheath within segmented sections along its anteroposterior axis. Our work sheds further light onto the molecular mechanisms that orchestrate early steps of vertebral column segmentation in teleosts. Similarities and differences to BMP's working mechanisms during mammalian vertebral column formation and the pathomechanisms underlying human bone diseases such as Fibrodysplasia Ossificans Progressiva (FOP) caused by constitutively active BMP signaling are discussed.


Assuntos
Doenças Ósseas , Calcinose , Humanos , Animais , Peixe-Zebra , Notocorda , Transdução de Sinais , Cognição , Mamíferos
3.
Matrix Biol ; 112: 132-154, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36007682

RESUMO

Hemicentins are large proteins of the extracellular matrix that belong to the fibulin family and play pivotal roles during development and homeostasis of a variety of invertebrate and vertebrate tissues. However, bona fide interaction partners of hemicentins have not been described as yet. Here, applying surface plasmon resonance spectroscopy and co-immunoprecipitation, we identify the basement membrane protein nidogen-2 (NID2) as a binding partner of mouse and zebrafish hemicentin-1 (HMCN1), in line with the formerly described essential role of mouse HMCN1 in basement membrane integrity. We show that HMCN1 binds to the same protein domain of NID2 (G2) as formerly shown for laminins, but with an approximately 3.5-fold lower affinity and in a competitive manner. Furthermore, immunofluorescence and immunogold labeling revealed that HMCN1/Hmcn1 is localized close to basement membranes and in partial overlap with NID2/Nid2a in different tissues of mouse and zebrafish. Genetic knockout and antisense-mediated knockdown studies in zebrafish further show that loss of Nid2a leads to similar defects in fin fold morphogenesis as the loss of Laminin-α5 (Lama5) or Hmcn1. Finally, combined partial loss-of-function studies indicated that nid2a genetically interacts with both hmcn1 and lama5. Together, these findings suggest that despite their mutually exclusive physical binding, hemicentins, nidogens, and laminins tightly cooperate and support each other during formation, maintenance, and function of basement membranes to confer tissue linkage.


Assuntos
Laminina , Peixe-Zebra , Animais , Membrana Basal/metabolismo , Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Laminina/genética , Laminina/metabolismo , Glicoproteínas de Membrana/metabolismo
4.
Sci Adv ; 7(20)2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33980486

RESUMO

CpG islands (CGIs) are key regulatory DNA elements at most promoters, but how they influence the chromatin status and transcription remains elusive. Here, we identify and characterize SAMD1 (SAM domain-containing protein 1) as an unmethylated CGI-binding protein. SAMD1 has an atypical winged-helix domain that directly recognizes unmethylated CpG-containing DNA via simultaneous interactions with both the major and the minor groove. The SAM domain interacts with L3MBTL3, but it can also homopolymerize into a closed pentameric ring. At a genome-wide level, SAMD1 localizes to H3K4me3-decorated CGIs, where it acts as a repressor. SAMD1 tethers L3MBTL3 to chromatin and interacts with the KDM1A histone demethylase complex to modulate H3K4me2 and H3K4me3 levels at CGIs, thereby providing a mechanism for SAMD1-mediated transcriptional repression. The absence of SAMD1 impairs ES cell differentiation processes, leading to misregulation of key biological pathways. Together, our work establishes SAMD1 as a newly identified chromatin regulator acting at unmethylated CGIs.


Assuntos
Cromatina , Motivo Estéril alfa , Cromatina/genética , Ilhas de CpG , DNA/metabolismo , Metilação de DNA
5.
Dev Biol ; 476: 148-170, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33826923

RESUMO

We have previously shown that the Kunitz-type serine protease inhibitor Spint1a, also named Hai1a, is required in the zebrafish embryonic epidermis to restrict the activity of the type II transmembrane serine protease (TTSP) Matriptase1a/St14a, thereby ensuring epidermal homeostasis. A closely related Kunitz-type inhibitor is Spint2/Hai2, which in mammals plays multiple developmental roles that are either redundant or non-redundant with those of Spint1. However, the molecular bases for these non-redundancies are not fully understood. Here, we study spint2 during zebrafish development. It is co-expressed with spint1a in multiple embryonic epithelia, including the outer/peridermal layer of the epidermis. However, unlike spint1a, spint2 expression is absent from the basal epidermal layer but present in hatching gland cells. Hatching gland cells derive from the mesendodermal prechordal plate, from where they undergo a thus far undescribed transit into, and coordinated sheet migration within, the interspace between the outer and basal layer of the epidermis to reach their final destination on the yolk sac. Hatching gland cells usually survive their degranulation that drives embryo hatching but die several days later. In spint2 mutants, cohesion among hatching gland cells and their collective intra-epidermal migration are disturbed, leading to a discontinuous organization of the gland. In addition, cells undergo precocious cell death before degranulation, so that embryos fail to hatch. Chimera analyses show that Spint2 is required in hatching gland cells, but not in the overlying periderm, their potential migration and adhesion substrate. Spint2 acts independently of all tested Matriptases, Prostasins and other described Spint1 and Spint2 mediators. However, it displays a tight genetic interaction with and acts at least partly via the cell-cell adhesion protein E-cadherin, promoting both hatching gland cell cohesiveness and survival, in line with formerly reported effects of E-cadherin during morphogenesis and cell death suppression. In contrast, no such genetic interaction was observed between Spint2 and the cell-cell adhesion molecule EpCAM, which instead interacts with Spint1a. Our data shed new light onto the mechanisms of hatching gland morphogenesis and hatching gland cell survival. In addition, they reveal developmental roles of Spint2 that are strikingly different from those of Spint1, most likely due to differences in the expression patterns and relevant target proteins.


Assuntos
Adesão Celular/fisiologia , Proteínas Secretadas Inibidoras de Proteinases/genética , Inibidores de Serina Proteinase/metabolismo , Animais , Caderinas , Adesão Celular/genética , Moléculas de Adesão Celular/genética , Movimento Celular/fisiologia , Sobrevivência Celular/fisiologia , Epiderme/metabolismo , Células Epiteliais/metabolismo , Expressão Gênica/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Organogênese , Proteínas Secretadas Inibidoras de Proteinases/metabolismo , Inibidores de Serina Proteinase/genética , Peixe-Zebra/embriologia , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
6.
Ann Neurol ; 86(3): 368-383, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31298765

RESUMO

OBJECTIVE: Autosomal dominant optic atrophy (ADOA) starts in early childhood with loss of visual acuity and color vision deficits. OPA1 mutations are responsible for the majority of cases, but in a portion of patients with a clinical diagnosis of ADOA, the cause remains unknown. This study aimed to identify novel ADOA-associated genes and explore their causality. METHODS: Linkage analysis and sequencing were performed in multigeneration families and unrelated patients to identify disease-causing variants. Functional consequences were investigated in silico and confirmed experimentally using the zebrafish model. RESULTS: We defined a new ADOA locus on 7q33-q35 and identified 3 different missense variants in SSBP1 (NM_001256510.1; c.113G>A [p.(Arg38Gln)], c.320G>A [p.(Arg107Gln)] and c.422G>A [p.(Ser141Asn)]) in affected individuals from 2 families and 2 singletons with ADOA and variable retinal degeneration. The mutated arginine residues are part of a basic patch that is essential for single-strand DNA binding. The loss of a positive charge at these positions is very likely to lower the affinity of SSBP1 for single-strand DNA. Antisense-mediated knockdown of endogenous ssbp1 messenger RNA (mRNA) in zebrafish resulted in compromised differentiation of retinal ganglion cells. A similar effect was achieved when mutated mRNAs were administered. These findings point toward an essential role of ssbp1 in retinal development and the dominant-negative nature of the identified human variants, which is consistent with the segregation pattern observed in 2 multigeneration families studied. INTERPRETATION: SSBP1 is an essential protein for mitochondrial DNA replication and maintenance. Our data have established pathogenic variants in SSBP1 as a cause of ADOA and variable retinal degeneration. ANN NEUROL 2019;86:368-383.


Assuntos
Proteínas de Ligação a DNA/genética , Predisposição Genética para Doença/genética , Proteínas Mitocondriais/genética , Atrofia Óptica Autossômica Dominante/genética , Animais , Diferenciação Celular/genética , Células Cultivadas , Feminino , Técnicas de Silenciamento de Genes , Ligação Genética/genética , Humanos , Masculino , Camundongos , Mutação de Sentido Incorreto , Atrofia Óptica Autossômica Dominante/patologia , Linhagem , RNA Mensageiro/genética , Degeneração Retiniana/genética , Degeneração Retiniana/patologia , Peixe-Zebra/genética
7.
Development ; 145(9)2018 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-29650589

RESUMO

Zebrafish mutants with increased retinoic acid (RA) signaling due to the loss of the RA-inactivating enzyme Cyp26b1 develop a hyper-mineralized spine with gradually fusing vertebral body precursors (centra). However, the underlying cellular mechanisms remain incompletely understood. Here, we show that cells of the notochord epithelium named chordoblasts are sensitive to RA signaling. Chordoblasts are uniformly distributed along the anteroposterior axis and initially generate the continuous collagenous notochord sheath. However, subsequently and iteratively, subsets of these cells undergo further RA-dependent differentiation steps, acquire a stellate-like shape, downregulate expression of the collagen gene col2a1a, switch on cyp26b1 expression and trigger metameric sheath mineralization. This mineralization fails to appear upon chordoblast-specific cell ablation or RA signal transduction blockade. Together, our data reveal that, despite their different developmental origins, the activities and regulation of chordoblasts are very similar to those of osteoblasts, including their RA-induced transition from osteoid-producing cells to osteoid-mineralizing ones. Furthermore, our data point to a requirement for locally controlled RA activity within the chordoblast layer in order to generate the segmented vertebral column.


Assuntos
Calcificação Fisiológica/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Notocorda/embriologia , Coluna Vertebral/embriologia , Tretinoína/metabolismo , Peixe-Zebra/embriologia , Animais , Colágeno/biossíntese , Colágeno/genética , Notocorda/citologia , Ácido Retinoico 4 Hidroxilase/genética , Ácido Retinoico 4 Hidroxilase/metabolismo , Coluna Vertebral/citologia , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
8.
PLoS One ; 13(1): e0191224, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29351342

RESUMO

Congenital anomalies of the kidney and urinary tract (CAKUT) are the most common cause (40-50%) of chronic kidney disease (CKD) in children. About 40 monogenic causes of CAKUT have so far been discovered. To date less than 20% of CAKUT cases can be explained by mutations in these 40 genes. To identify additional monogenic causes of CAKUT, we performed whole exome sequencing (WES) and homozygosity mapping (HM) in a patient with CAKUT from Indian origin and consanguineous descent. We identified a homozygous missense mutation (c.1336C>T, p.Arg446Cys) in the gene Von Willebrand factor A domain containing 2 (VWA2). With immunohistochemistry studies on kidneys of newborn (P1) mice, we show that Vwa2 and Fraser extracellular matrix complex subunit 1 (Fras1) co-localize in the nephrogenic zone of the renal cortex. We identified a pronounced expression of Vwa2 in the basement membrane of the ureteric bud (UB) and derivatives of the metanephric mesenchyme (MM). By applying in vitro assays, we demonstrate that the Arg446Cys mutation decreases translocation of monomeric VWA2 protein and increases translocation of aggregated VWA2 protein into the extracellular space. This is potentially due to the additional, unpaired cysteine residue in the mutated protein that is used for intermolecular disulfide bond formation. VWA2 is a known, direct interactor of FRAS1 of the Fraser-Complex (FC). FC-encoding genes and interacting proteins have previously been implicated in the pathogenesis of syndromic and/or isolated CAKUT phenotypes in humans. VWA2 therefore constitutes a very strong candidate in the search for novel CAKUT-causing genes. Our results from in vitro experiments indicate a dose-dependent neomorphic effect of the Arg446Cys homozygous mutation in VWA2.


Assuntos
Biomarcadores Tumorais/genética , Síndrome de Fraser/genética , Mutação de Sentido Incorreto , Anormalidades Urogenitais/genética , Refluxo Vesicoureteral/genética , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Animais Recém-Nascidos , Biomarcadores Tumorais/química , Proteínas de Ligação ao Cálcio , Criança , Consanguinidade , Sequência Conservada , Éxons , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Homozigoto , Humanos , Masculino , Camundongos , Modelos Animais , Modelos Moleculares , Linhagem , Homologia de Sequência de Aminoácidos , Sistema Urogenital/crescimento & desenvolvimento , Sistema Urogenital/metabolismo
9.
Development ; 140(5): 1111-22, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23404108

RESUMO

The neurohypophysis is a crucial component of the hypothalamo-pituitary axis, serving as the site of release of hypothalamic neurohormones into a plexus of hypophyseal capillaries. The growth of hypothalamic axons and capillaries to the forming neurohypophysis in embryogenesis is therefore crucial to future adult homeostasis. Using ex vivo analyses in chick and in vivo analyses in mutant and transgenic zebrafish, we show that Fgf10 and Fgf3 secreted from the forming neurohypophysis exert direct guidance effects on hypothalamic neurosecretory axons. Simultaneously, they promote hypophyseal vascularisation, exerting early direct effects on endothelial cells that are subsequently complemented by indirect effects. Together, our studies suggest a model for the integrated neurohemal wiring of the hypothalamo-neurohypophyseal axis.


Assuntos
Fator 10 de Crescimento de Fibroblastos/fisiologia , Fator 3 de Crescimento de Fibroblastos/fisiologia , Neovascularização Fisiológica/genética , Neuro-Hipófise/irrigação sanguínea , Neuro-Hipófise/inervação , Proteínas de Peixe-Zebra/fisiologia , Animais , Animais Geneticamente Modificados , Axônios/metabolismo , Axônios/fisiologia , Células Cultivadas , Embrião de Galinha/irrigação sanguínea , Embrião de Galinha/inervação , Embrião de Galinha/metabolismo , Embrião não Mamífero/irrigação sanguínea , Embrião não Mamífero/inervação , Embrião não Mamífero/metabolismo , Fator 10 de Crescimento de Fibroblastos/genética , Fator 10 de Crescimento de Fibroblastos/metabolismo , Fator 3 de Crescimento de Fibroblastos/genética , Fator 3 de Crescimento de Fibroblastos/metabolismo , Sistema Hipotálamo-Hipofisário/irrigação sanguínea , Sistema Hipotálamo-Hipofisário/embriologia , Sistema Hipotálamo-Hipofisário/metabolismo , Modelos Biológicos , Neovascularização Fisiológica/fisiologia , Neuro-Hipófise/embriologia , Vertebrados/embriologia , Vertebrados/genética , Vertebrados/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Peixe-Zebra/fisiologia , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
10.
Am J Hum Genet ; 91(5): 919-27, 2012 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-23084290

RESUMO

A subset of nuclear-encoded RNAs has to be imported into mitochondria for the proper replication and transcription of the mitochondrial genome and, hence, for proper mitochondrial function. Polynucleotide phosphorylase (PNPase or PNPT1) is one of the very few components known to be involved in this poorly characterized process in mammals. At the organismal level, however, the effect of PNPase dysfunction and impaired mitochondrial RNA import are unknown. By positional cloning, we identified a homozygous PNPT1 missense mutation (c.1424A>G predicting the protein substitution p.Glu475Gly) of a highly conserved PNPase residue within the second RNase-PH domain in a family affected by autosomal-recessive nonsyndromic hearing impairment. In vitro analyses in bacteria, yeast, and mammalian cells showed that the identified mutation results in a hypofunctional protein leading to disturbed PNPase trimerization and impaired mitochondrial RNA import. Immunohistochemistry revealed strong PNPase staining in the murine cochlea, including the sensory hair cells and the auditory ganglion neurons. In summary, we show that a component of the mitochondrial RNA-import machinery is specifically required for auditory function.


Assuntos
Exorribonucleases/genética , Perda Auditiva Neurossensorial/genética , Mutação , Transporte de RNA/genética , RNA/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Linhagem Celular , Mapeamento Cromossômico , Cóclea/metabolismo , Cóclea/patologia , Consanguinidade , Éxons , Exorribonucleases/química , Exorribonucleases/metabolismo , Feminino , Expressão Gênica , Perda Auditiva Neurossensorial/metabolismo , Humanos , Masculino , Camundongos , Modelos Moleculares , Dados de Sequência Molecular , Linhagem , Conformação Proteica , RNA Mitocondrial , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
11.
Am J Hum Genet ; 89(5): 595-606, 2011 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-22019272

RESUMO

Excess exogenous retinoic acid (RA) has been well documented to have teratogenic effects in the limb and craniofacial skeleton. Malformations that have been observed in this context include craniosynostosis, a common developmental defect of the skull that occurs in 1 in 2500 individuals and results from premature fusion of the cranial sutures. Despite these observations, a physiological role for RA during suture formation has not been demonstrated. Here, we present evidence that genetically based alterations in RA signaling interfere with human development. We have identified human null and hypomorphic mutations in the gene encoding the RA-degrading enzyme CYP26B1 that lead to skeletal and craniofacial anomalies, including fusions of long bones, calvarial bone hypoplasia, and craniosynostosis. Analyses of murine embryos exposed to a chemical inhibitor of Cyp26 enzymes and zebrafish lines with mutations in cyp26b1 suggest that the endochondral bone fusions are due to unrestricted chondrogenesis at the presumptive sites of joint formation within cartilaginous templates, whereas craniosynostosis is induced by a defect in osteoblastic differentiation. Ultrastructural analysis, in situ expression studies, and in vitro quantitative RT-PCR experiments of cellular markers of osseous differentiation indicate that the most likely cause for these phenomena is aberrant osteoblast-osteocyte transitioning. This work reveals a physiological role for RA in partitioning skeletal elements and in the maintenance of cranial suture patency.


Assuntos
Suturas Cranianas , Craniossinostoses , Sistema Enzimático do Citocromo P-450 , Tretinoína , Proteínas de Peixe-Zebra/genética , Animais , Diferenciação Celular , Suturas Cranianas/efeitos dos fármacos , Suturas Cranianas/embriologia , Suturas Cranianas/crescimento & desenvolvimento , Suturas Cranianas/patologia , Craniossinostoses/enzimologia , Craniossinostoses/genética , Craniossinostoses/patologia , Inibidores das Enzimas do Citocromo P-450 , Sistema Enzimático do Citocromo P-450/genética , Modelos Animais de Doenças , Feminino , Morte Fetal/genética , Regulação da Expressão Gênica no Desenvolvimento , Crescimento e Desenvolvimento/genética , Humanos , Camundongos , Osteoblastos/citologia , Osteogênese/efeitos dos fármacos , Osteogênese/genética , Polimorfismo Genético/genética , Gravidez , Ácido Retinoico 4 Hidroxilase , Homologia de Sequência de Aminoácidos , Tretinoína/metabolismo , Tretinoína/farmacologia , Peixe-Zebra/embriologia , Peixe-Zebra/genética
12.
Nat Methods ; 8(6): 506-15, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21552255

RESUMO

We describe a conditional in vivo protein-trap mutagenesis system that reveals spatiotemporal protein expression dynamics and can be used to assess gene function in the vertebrate Danio rerio. Integration of pGBT-RP2.1 (RP2), a gene-breaking transposon containing a protein trap, efficiently disrupts gene expression with >97% knockdown of normal transcript amounts and simultaneously reports protein expression for each locus. The mutant alleles are revertible in somatic tissues via Cre recombinase or splice-site-blocking morpholinos and are thus to our knowledge the first systematic conditional mutant alleles outside the mouse model. We report a collection of 350 zebrafish lines that include diverse molecular loci. RP2 integrations reveal the complexity of genomic architecture and gene function in a living organism and can provide information on protein subcellular localization. The RP2 mutagenesis system is a step toward a unified 'codex' of protein expression and direct functional annotation of the vertebrate genome.


Assuntos
Mutagênese Insercional/métodos , Proteoma/genética , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/genética , Animais , Animais Geneticamente Modificados , Elementos de DNA Transponíveis/genética , Perfilação da Expressão Gênica , Técnicas de Silenciamento de Genes/métodos , Modelos Animais , Dados de Sequência Molecular , Proteômica/métodos
13.
Am J Hum Genet ; 88(2): 127-37, 2011 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-21255762

RESUMO

By using homozygosity mapping in a consanguineous Pakistani family, we detected linkage of nonsyndromic hearing loss to a 7.6 Mb region on chromosome 3q13.31-q21.1 within the previously reported DFNB42 locus. Subsequent candidate gene sequencing identified a homozygous nonsense mutation (c.1135G>T [p.Glu379X]) in ILDR1 as the cause of hearing impairment. By analyzing additional consanguineous families with homozygosity at this locus, we detected ILDR1 mutations in the affected individuals of 10 more families from Pakistan and Iran. The identified ILDR1 variants include missense, nonsense, frameshift, and splice-site mutations as well as a start codon mutation in the family that originally defined the DFNB42 locus. ILDR1 encodes the evolutionarily conserved immunoglobulin-like domain containing receptor 1, a putative transmembrane receptor of unknown function. In situ hybridization detected expression of Ildr1, the murine ortholog, early in development in the vestibule and in hair cells and supporting cells of the cochlea. Expression in hair cell- and supporting cell-containing neurosensory organs is conserved in the zebrafish, in which the ildr1 ortholog is prominently expressed in the developing ear and neuromasts of the lateral line. These data identify loss-of-function mutations of ILDR1, a gene with a conserved expression pattern pointing to a conserved function in hearing in vertebrates, as underlying nonsyndromic prelingual sensorineural hearing impairment.


Assuntos
Códon sem Sentido/genética , Genes Recessivos/genética , Predisposição Genética para Doença , Perda Auditiva/genética , Receptores de Superfície Celular/genética , Animais , Mapeamento Cromossômico , Cromossomos Humanos Par 3/genética , Consanguinidade , Orelha Interna , Feminino , Ligação Genética , Genótipo , Humanos , Hibridização In Situ , Escore Lod , Masculino , Camundongos , Linhagem , Peixe-Zebra
14.
Mol Cell Endocrinol ; 312(1-2): 2-13, 2009 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-19728983

RESUMO

The anterior pituitary gland, or adenohypophysis (AH), represents the key component of the vertebrate hypothalamo-hypophyseal axis, where it functions at the interphase of the nervous and endocrine system to regulate basic body functions like growth, metabolism and reproduction. For developmental biologists, the adenohypophysis serves as an excellent model system for the studies of organogenesis and differential cell fate specification. Previous research, mainly done in mouse, identified numerous extrinsic signaling cues and intrinsic transcription factors that orchestrate the gland's developmental progression. In the past years, the zebrafish has emerged as a powerful tool to elucidate the genetic networks controlling vertebrate development, behavior and disease. Based on mutants isolated in forward genetic screens and on gene knock-downs using morpholino oligonucleotide (oligo) antisense technology, our current understanding of the molecular machinery driving adenohypophyseal ontogeny could be considerably improved. In addition, comparative analyses have shed further light onto the evolution of this rather recently invented organ. The goal of this review is to summarize current knowledge of the genetic and molecular control of zebrafish pituitary development, with special focus on most recent findings, including some thus far unpublished data from our own laboratory on the transcription factor Six1. In addition, zebrafish data will be discussed in comparison with current understanding of adenohypophysis development in mouse.


Assuntos
Sistema Hipotálamo-Hipofisário/crescimento & desenvolvimento , Adeno-Hipófise/crescimento & desenvolvimento , Hipófise/crescimento & desenvolvimento , Peixe-Zebra/crescimento & desenvolvimento , Animais , Diferenciação Celular/genética , Sistema Hipotálamo-Hipofisário/embriologia , Camundongos , Modelos Animais , Hipófise/embriologia , Adeno-Hipófise/embriologia , Adeno-Hipófise/fisiologia , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
15.
Mol Cell Biol ; 29(11): 3173-85, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19307306

RESUMO

PLRG1, an evolutionarily conserved component of the spliceosome, forms a complex with Pso4/SNEV/Prp19 and the cell division and cycle 5 homolog (CDC5L) that is involved in both pre-mRNA splicing and DNA repair. Here, we show that the inactivation of PLRG1 in mice results in embryonic lethality at 1.5 days postfertilization. Studies of heart- and neuron-specific PLRG1 knockout mice further reveal an essential role of PLRG1 in adult tissue homeostasis and the suppression of apoptosis. PLRG1-deficient mouse embryonic fibroblasts (MEFs) fail to progress through S phase upon serum stimulation and exhibit increased rates of apoptosis. PLRG1 deficiency causes enhanced p53 phosphorylation and stabilization in the presence of increased gamma-H2AX immunoreactivity as an indicator of an activated DNA damage response. p53 downregulation rescues lethality in both PLRG1-deficient MEFs and zebrafish in vivo, showing that apoptosis resulting from PLRG1 deficiency is p53 dependent. Moreover, the deletion of PLRG1 results in the relocation of its interaction partner CDC5L from the nucleus to the cytoplasm without general alterations in pre-mRNA splicing. Taken together, the results of this study identify PLRG1 as a critical nuclear regulator of p53-dependent cell cycle progression and apoptosis during both embryonic development and adult tissue homeostasis.


Assuntos
Apoptose , Desenvolvimento Embrionário , Homeostase , Proteínas Nucleares/metabolismo , Vertebrados/embriologia , Proteínas de Peixe-Zebra/metabolismo , Animais , Ciclo Celular , Proliferação de Células , Cruzamentos Genéticos , Citoplasma/metabolismo , Perda do Embrião/metabolismo , Embrião de Mamíferos/citologia , Feminino , Fibroblastos/citologia , Fibroblastos/metabolismo , Masculino , Camundongos , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Proteínas Nucleares/deficiência , Especificidade de Órgãos , Transporte Proteico , Proteínas de Ligação a RNA/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Peixe-Zebra/embriologia , Proteínas de Peixe-Zebra/deficiência
16.
Semin Cell Dev Biol ; 18(4): 543-58, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17560816

RESUMO

The pituitary gland of vertebrates consists of two major parts, the neurohypophysis (NH) and the adenohypophysis (AH). As a central part of the hypothalamo-hypophyseal system (HHS), it constitutes a functional link between the nervous and the endocrine system to regulate basic body functions, such as growth, metabolism and reproduction. The development of the AH has been intensively studied in mouse, serving as a model for organogenesis and differential cell specification. However, given that the AH is a relatively recent evolutionary advance of the chordate phylum, it is also interesting to understand its development in lower chordate systems. In recent years, the zebrafish has emerged as a powerful lower vertebrate system for developmental studies, being amenable for large-scale genetic approaches, embryological manipulations, and in vivo imaging. Here, we present an overview of current knowledge of the mechanisms and genetic control of pituitary formation during zebrafish development. First, we describe the components of the zebrafish HHS, and the different pituitary cell types and hormones, followed by a description of the different steps of normal pituitary development. The central part of the review deals with the genes found to be essential for zebrafish AH development, accompanied by a description of the corresponding mutant phenotypes. Finally, we discuss future directions, with particular focus on evolutionary aspects, and some novel functional aspects with growing medical and social relevance.


Assuntos
Hipófise/embriologia , Peixe-Zebra/embriologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Padronização Corporal , Evolução Molecular , Fator 3 de Crescimento de Fibroblastos/metabolismo , Proteínas de Homeodomínio/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Nucleares/metabolismo , Hipófise/crescimento & desenvolvimento , Hipófise/metabolismo , Adeno-Hipófise/embriologia , Adeno-Hipófise/crescimento & desenvolvimento , Adeno-Hipófise/metabolismo , Neuro-Hipófise/embriologia , Neuro-Hipófise/crescimento & desenvolvimento , Neuro-Hipófise/metabolismo , Proteínas Tirosina Fosfatases/metabolismo , Fator de Transcrição Pit-1/metabolismo , Fatores de Transcrição , Peixe-Zebra/crescimento & desenvolvimento , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/metabolismo
17.
Mol Cell Neurosci ; 35(2): 194-207, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17425960

RESUMO

Contactin1a (Cntn1a) is a zebrafish homolog of contactin1 (F3/F11/contactin) in mammals, an immunoglobulin superfamily recognition molecule of neurons and oligodendrocytes. We describe conspicuous Cntn1a mRNA expression in oligodendrocytes in the developing optic pathway of zebrafish. In adults, this expression is only retained in glial cells in the intraretinal optic fiber layer, which contains 'loose' myelin. After optic nerve lesion, oligodendrocytes re-express Cntn1a mRNA independently of the presence of regenerating axons and retinal ganglion cells upregulate Cntn1a expression to levels that are significantly higher than those during development. After spinal cord lesion, expression of Cntn1a mRNA is similarly increased in axotomized brainstem neurons and white matter glial cells in the spinal cord. In addition, reduced mRNA expression in the trigeminal/anterior lateral line ganglion in erbb3-deficient mutant larvae implies Cntn1a in Schwann cell differentiation. These complex regulation patterns suggest roles for Cntn1a in myelinating cells and neurons particularly in successful CNS regeneration.


Assuntos
Moléculas de Adesão Celular Neuronais/metabolismo , Diferenciação Celular/fisiologia , Sistema Nervoso Central/patologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Regeneração Nervosa/fisiologia , Oligodendroglia/fisiologia , Animais , Animais Geneticamente Modificados , Animais Recém-Nascidos , Moléculas de Adesão Celular Neuronais/genética , Sistema Nervoso Central/fisiopatologia , Contactina 1 , Contactinas , Embrião não Mamífero , Enucleação Ocular/métodos , Hibridização In Situ/métodos , Microscopia Eletrônica de Transmissão/métodos , Proteína P0 da Mielina/metabolismo , Glicoproteína Associada a Mielina/metabolismo , Neurônios/fisiologia , Neurônios/ultraestrutura , Oligodendroglia/ultraestrutura , Traumatismos do Nervo Óptico/patologia , Traumatismos do Nervo Óptico/fisiopatologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptor ErbB-3/genética , Traumatismos da Medula Espinal/patologia , Traumatismos da Medula Espinal/fisiopatologia , Peixe-Zebra , Proteínas de Peixe-Zebra
18.
J Neurochem ; 101(1): 274-88, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17394468

RESUMO

The rat ortholog of the WD40 repeat protein Wdr16 is abundantly expressed in testis and cultured ependymal cells. Low levels are found in lung and brain, respectively, while it is absent from kinocilia-free tissues. In testis and ependymal primary cultures, Wdr16 messenger RNA appears concomitantly with the messages for sperm-associated antigen 6, a kinocilia marker, and for hydin, a protein linked to ciliary function and hydrocephalus. In testis, ependyma and respiratory epithelium, the Wdr16 protein is up-regulated together with kinocilia formation. The wdr16 gene is restricted to genera in possession of kinocilia, and it is strongly conserved during evolution. The human and zebrafish proteins are identical in 62% of their aligned amino acids. On the message level, the zebrafish Wdr16 ortholog was found exclusively in kinocilia-bearing tissues by in situ hybridisation. Gene knockdown in zebrafish embryos by antisense morpholino injection resulted in severe hydrocephalus formation with unaltered ependymal morphology or ciliary beat. Wdr16 can be considered a differentiation marker of kinocilia-bearing cells. In the brain, it appears to be functionally related to water homeostasis or osmoregulation.


Assuntos
Cílios/metabolismo , Hidrocefalia/genética , Proteínas dos Microfilamentos/genética , Proteínas do Tecido Nervoso/genética , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/anormalidades , Sequência de Aminoácidos , Animais , Sequência de Bases , Biomarcadores/análise , Biomarcadores/metabolismo , Células Cultivadas , Transtornos da Motilidade Ciliar/genética , Transtornos da Motilidade Ciliar/metabolismo , Transtornos da Motilidade Ciliar/fisiopatologia , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/fisiologia , Epêndima/anormalidades , Epêndima/citologia , Epêndima/metabolismo , Evolução Molecular , Humanos , Hidrocefalia/metabolismo , Hidrocefalia/fisiopatologia , Ventrículos Laterais/anormalidades , Ventrículos Laterais/metabolismo , Ventrículos Laterais/fisiopatologia , Proteínas dos Microfilamentos/biossíntese , Proteínas dos Microfilamentos/isolamento & purificação , Dados de Sequência Molecular , Proteínas do Tecido Nervoso/biossíntese , Proteínas do Tecido Nervoso/isolamento & purificação , Oligonucleotídeos Antissenso/farmacologia , Filogenia , RNA Mensageiro/metabolismo , Ratos , Homologia de Sequência de Aminoácidos , Equilíbrio Hidroeletrolítico/genética , Equilíbrio Hidroeletrolítico/fisiologia , Proteínas de Peixe-Zebra/biossíntese , Proteínas de Peixe-Zebra/isolamento & purificação
19.
Dev Biol ; 298(1): 118-31, 2006 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-16875686

RESUMO

The myelin sheath insulates axons in the vertebrate nervous system, allowing rapid propagation of action potentials via saltatory conduction. Specialized glial cells, termed Schwann cells in the PNS and oligodendrocytes in the CNS, wrap axons to form myelin, a compacted, multilayered sheath comprising specific proteins and lipids. Disruption of myelinated axons causes human diseases, including multiple sclerosis and Charcot-Marie-Tooth peripheral neuropathies. Despite the progress in identifying human disease genes and other mutations disrupting glial development and myelination, many important unanswered questions remain about the mechanisms that coordinate the development of myelinated axons. To address these questions, we began a genetic dissection of myelination in zebrafish. Here we report a genetic screen that identified 13 mutations, which define 10 genes, disrupting the development of myelinated axons. We present the initial characterization of seven of these mutations, defining six different genes, along with additional characterization of mutations that we have described previously. The different mutations affect the PNS, the CNS, or both, and phenotypic analyses indicate that the genes affect a wide range of steps in glial development, from fate specification through terminal differentiation. The analysis of these mutations will advance our understanding of myelination, and the mutants will serve as models of human diseases of myelin.


Assuntos
Axônios/metabolismo , Mutação , Bainha de Mielina/metabolismo , Fibras Nervosas Mielinizadas/metabolismo , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Animais , Padronização Corporal , Sistema Nervoso Central/metabolismo , Embrião não Mamífero , Regulação da Expressão Gênica no Desenvolvimento , Masculino , Sistema Nervoso Periférico/metabolismo , Fenótipo , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
20.
Curr Biol ; 16(7): 636-48, 2006 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-16581508

RESUMO

BACKGROUND: Myelinated axons are essential for rapid conduction of action potentials in the vertebrate nervous system. Of particular importance are the nodes of Ranvier, sites of voltage-gated sodium channel clustering that allow action potentials to be propagated along myelinated axons by saltatory conduction. Despite their critical role in the function of myelinated axons, little is known about the mechanisms that organize the nodes of Ranvier. RESULTS: Starting with a forward genetic screen in zebrafish, we have identified an essential requirement for nsf (N-ethylmaleimide sensitive factor) in the organization of myelinated axons. Previous work has shown that NSF is essential for membrane fusion in eukaryotes and has a critical role in vesicle fusion at chemical synapses. Zebrafish nsf mutants are paralyzed and have impaired response to light, reflecting disrupted nsf function in synaptic transmission and neural activity. In addition, nsf mutants exhibit defects in Myelin basic protein expression and in localization of sodium channel proteins at nodes of Ranvier. Analysis of chimeric larvae indicates that nsf functions autonomously in neurons, such that sodium channel clusters are evident in wild-type neurons transplanted into the nsf mutant hosts. Through pharmacological analyses, we show that neural activity and function of chemical synapses are not required for sodium channel clustering and myelination in the larval nervous system. CONCLUSIONS: Zebrafish nsf mutants provide a novel vertebrate system to investigate Nsf function in vivo. Our results reveal a previously unknown role for nsf, independent of its function in synaptic vesicle fusion, in the formation of the nodes of Ranvier in the vertebrate nervous system.


Assuntos
Proteínas Sensíveis a N-Etilmaleimida/fisiologia , Nós Neurofibrosos/ultraestrutura , Proteínas de Peixe-Zebra/fisiologia , Peixe-Zebra/metabolismo , Potenciais de Ação/fisiologia , Animais , Morte Celular/fisiologia , Quimera/metabolismo , Marcadores Genéticos , Células Ciliadas Auditivas/fisiologia , Larva/anatomia & histologia , Larva/genética , Larva/metabolismo , Movimento/fisiologia , Mutação , Proteína Básica da Mielina/genética , Proteínas Sensíveis a N-Etilmaleimida/genética , Fenótipo , RNA Mensageiro/metabolismo , Nós Neurofibrosos/metabolismo , Canais de Sódio/fisiologia , Transmissão Sináptica/fisiologia , Peixe-Zebra/genética , Peixe-Zebra/crescimento & desenvolvimento , Proteínas de Peixe-Zebra/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...