Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 4(11): e7934, 2009 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-19936205

RESUMO

Regular endurance exercise induces skeletal muscle contractile and metabolic adaptations, conferring salutary health benefits, such as protection against the metabolic syndrome. The plasticity of skeletal muscle has been extensively investigated, but how the adaptive processes are precisely controlled is largely unknown. Using muscle-specific gene deletion in mice, we now show that p38gamma mitogen-activated protein kinase (MAPK), but not p38alpha and p38beta, is required for endurance exercise-induced mitochondrial biogenesis and angiogenesis, whereas none of the p38 isoforms are required for IIb-to-IIa fiber-type transformation. These phenotypic findings were further supported by microarray and real-time PCR analyses revealing contractile activity-dependent p38gamma target genes, including peroxisome proliferator-activated receptor gamma co-activator-1alpha (Pgc-1alpha) and vascular endothelial growth factor (Vegf), in skeletal muscle following motor nerve stimulation. Gene transfer-mediated overexpression of a dominant negative form of p38gamma, but not that of p38alpha or p38beta, blocked motor nerve stimulation-induced Pgc-1alpha transcription. These findings provide direct evidence for an obligated role of p38gamma MAPK-PGC-1alpha regulatory axis in endurance exercise-induced metabolic adaptation, but not contractile adaptation, in skeletal muscle.


Assuntos
Regulação Enzimológica da Expressão Gênica , Músculo Esquelético/enzimologia , Proteínas Quinases p38 Ativadas por Mitógeno/fisiologia , Animais , Genes Dominantes , Sistema de Sinalização das MAP Quinases , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Contração Muscular , Músculo Esquelético/metabolismo , Neovascularização Patológica , Análise de Sequência com Séries de Oligonucleotídeos , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Condicionamento Físico Animal , Isoformas de Proteínas , Transativadores/metabolismo , Fatores de Transcrição , Fator A de Crescimento do Endotélio Vascular/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/genética
2.
Mol Diagn Ther ; 10(3): 187-96, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16771604

RESUMO

BACKGROUND: Rising morbidity and mortality related to the use of NSAIDs has led to the withdrawal of some of these agents and reconsideration of the adverse effects and usage paradigms of commonly available NSAIDs. Our objective in this study was to assay molecular indicators of acute hepatic injury associated with the administration of indomethacin, a prototypical NSAID, metabolized by the liver that undergoes enterohepatic circulation with associated gastrointestinal adverse effects. METHODS: Analysis of gene expression, using high-throughput, ADME (absorption, distribution, metabolism, excretion)-specific microarrays, was performed on RNA extracted from the livers of control or indomethacin treated rats, in parallel with serum enzyme tests and histological analysis of paraffin-embedded liver specimens. Male Sprague-Dawley rats (n = 45) were administered intraperitoneal injections of indomethacin for 3 days at the recommended normal dose (6.7 mg/kg), indomethacin at a high dose (20 mg/kg) or vehicle alone (controls). RESULTS: Upon termination of the study on day 4, serum gamma-glutamyl transferase activity and alkaline phosphatase/alanine aminotransferase ratios were significantly elevated in both high- and normal-dose cohorts compared with vehicle-treated animals. Diffuse microvascular steatosis was present in hepatic serial sections obtained from all animals subjected to the high-dosage regimen. High-resolution microarray analysis (six replicates/gene/animal) identified 256 genes, after outlier removal, in 17 functional classifications that were significantly altered by the high, but not by the normal dosage. These included depression of 10 of 11 cytochrome P450 genes (2B3, 2C70, 1A2-P2, 4F1, 2E1, 3A1, 2F1, 3AP7, 2C11, phenobarb-inducible P6) and 7 of 9 genes involved in the response to reactive oxygen species (e.g. glutathione reductase, glutathione transferase, and superoxide dismutase). Of 16 genes associated with toxin removal, nine exhibited significantly decreased transcripts. There was a marked shift away from lipid metabolism (decreased expression of eight genes) towards glucose utilization associated with steatosis. Despite the compromise of detoxification programs and a shift in metabolic substrate utilization, a compensatory remodeling response was activated, including genes for metalloproteases (ADAM10, MMP10, MMP11), integrins (integrin alpha-1 and alpha-E1), and extracellular matrix molecules (platelet/endothelial cell adhesion molecule-1 and heparan sulfate proteoglycan, perlecan), as well as transcripts associated with cell proliferation. The expression levels of only five genes were significantly altered among animals receiving the normal indomethacin dosage. CONCLUSION: These data confirmed that even brief exposure to indomethacin altered serum enzymatic activities and that high levels significantly altered gene expression in the liver and hepatic histology (by interfering with the clearance of toxins and xenobiotic substrates) and the regulation of basal metabolism.


Assuntos
Anti-Inflamatórios não Esteroides/toxicidade , Perfilação da Expressão Gênica , Indometacina/toxicidade , Fígado/efeitos dos fármacos , Animais , Anti-Inflamatórios não Esteroides/administração & dosagem , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Sistema Enzimático do Citocromo P-450/sangue , Sistema Enzimático do Citocromo P-450/metabolismo , Indometacina/administração & dosagem , Fígado/metabolismo , Fígado/patologia , Masculino , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...