Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biomech ; 118: 110279, 2021 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-33545572

RESUMO

The pulmonary tract is an attractive route for topical treatments of lung diseases. Yet, our ability to confine the deposition of inhalation aerosols to specific lung regions, or local airways, remains still widely beyond reach. It has been hypothesized that by coupling magnetic particles to inhaled therapeutics the ability to locally target airway sites can be substantially improved. Although the underlying principle has shown promise in seminal in vivo animal experiments as well as in vitro and in silico studies, its practical implementation has come short of delivering efficient localized airway targeting. Here, we demonstrate in an in vitro proof-of-concept an inhalation framework to leverage magnetically-loaded aerosols for airway targeting in the presence of an external magnetic field. By coupling the delivery of a short pulsed bolus of sub-micron (~500 nm diameter) droplet aerosols with a custom ventilation machine that tracks the volume of air inhaled past the bolus, focused targeting can be maximized during a breath hold maneuver. Specifically, we visualize the motion of the pulsed SPION-laden (superparamagnetic iron oxide nanoparticles) aerosol bolus and quantify under microscopy ensuing deposition patterns in reconstructed 3D airway models. Our aerosol inhalation platform allows for the first time to deposit inhaled particles to specific airway sites while minimizing undesired deposition across the remaining airspace, in an effort to significantly augment the targeting efficiency (i.e. deposition ratio between targeted and untargeted regions). Such inhalation strategy may pave the way for improved treatment outcomes, including reducing side effects in chemotherapy.


Assuntos
Pulmão , Fenômenos Magnéticos , Administração por Inalação , Aerossóis , Tamanho da Partícula
2.
Drug Deliv ; 26(1): 1039-1048, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31691600

RESUMO

Tuberculosis (TB) has gained attention over the past few decades by becoming one of the top ten leading causes of death worldwide. This infectious disease of the lungs is orally treated with a medicinal armamentarium. However, this route of administration passes through the body's first-pass metabolism which reduces the drugs' bioavailability and toxicates the liver and kidneys. Inhalation therapy represents an alternative to the oral route, but low deposition efficiencies of delivery devices such as nebulizers and dry powder inhalers render it challenging as a favorable therapy. It was hypothesized that by encapsulating two potent TB-agents, i.e. Q203 and bedaquiline, that inhibit the oxidative phosphorylation of the bacteria together with a magnetic targeting component, superparamagnetic iron oxides, into a poly (D, L-lactide-co-glycolide) (PDLG) carrier using a single emulsion technique, the treatment of TB can be a better therapeutic alternative. This simple fabrication method achieved a homogenous distribution of 500 nm particles with a magnetic saturation of 28 emu/g. Such particles were shown to be magnetically susceptible in an in-vitro assessment, viable against A549 epithelial cells, and were able to reduce two log bacteria counts of the Bacillus Calmette-Guerin (BCG) organism. Furthermore, through the use of an external magnet, our in-silico Computational Fluid Dynamics (CFD) simulations support the notion of yielding 100% deposition in the deep lungs. Our proposed inhalation therapy circumvents challenges related to oral and respiratory treatments and embodies a highly favorable new treatment regime.


Assuntos
Antituberculosos/farmacologia , Diarilquinolinas/química , Compostos Férricos/química , Imidazóis/química , Pulmão/efeitos dos fármacos , Nanopartículas de Magnetita/química , Piperidinas/química , Piridinas/química , Tuberculose/tratamento farmacológico , Células A549 , Administração por Inalação , Antituberculosos/metabolismo , Disponibilidade Biológica , Linhagem Celular Tumoral , Diarilquinolinas/metabolismo , Diarilquinolinas/farmacologia , Sistemas de Liberação de Medicamentos/métodos , Inaladores de Pó Seco/métodos , Humanos , Pulmão/metabolismo , Mycobacterium tuberculosis/efeitos dos fármacos , Tuberculose/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...