Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 15(3)2022 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-35161117

RESUMO

This research aimed to investigate the performance of prepacked aggregates fiber-reinforced concrete (PAFRC) with adequate acoustic characteristics for various applications. PAFRC is a newly developed concrete made by arranging and packing aggregates and short fibers in predetermined formworks, then inserting a grout mixture into the voids amongst the aggregate particles using a pump or gravity mechanism. After a one-year curing period, the effects of utilizing waste polypropylene (PP) fibers on the strength and acoustic characteristics of PAFRC mixes were examined. Compressive and tensile strengths, ultrasonic pulse velocity (UPV), sound absorption, and transmission loss were investigated on plain concrete and PAFRC mixtures comprising 0-1% PP fibers. The results revealed that the use of PP fibers slightly decreased the compressive strength and UPV of PAFRC mixes. The inclusion of waste PP fibers also significantly increased the tensile strength and sound insulation coefficient of PAFRC mixes, especially at higher fiber dosages. In the medium-to-high frequency ranges, more than 60% acoustic absorption coefficient was observed, indicating that PAFRC specimens have good sound insulation properties.

2.
Gels ; 8(1)2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-35049588

RESUMO

Various geopolymer mortars (GPMs) as concrete repairing materials have become effective owing to their eco-friendly properties. Geopolymer binders designed from agricultural and industrial wastes display interesting and useful mechanical performance. Based on this fact, this research (experimental) focuses on the feasibility of achieving a new GPM with improved mechanical properties and enhanced durability performance against the aggressive sulfuric acid and sulfate attacks. This new ternary blend of GPMs can be achieved by combining waste ceramic tiles (WCT), fly ash (FA) and ground blast furnace slag (GBFS) with appropriate proportions. These GPMs were designed from a high volume of WCT, FA, and GBFS to repair the damaged concretes existing in the construction sectors. Flexural strength, slant shear bond strength, and compatibility of the obtained GPMs were compared with the base or normal concrete (NC) before and after exposure to the aggressive environments. Tests including flexural four-point loading and thermal expansion coefficient were performed. These GPMs were prepared using a low concentration of alkaline activator solution with increasing levels of GBFS and FA replaced by WCT. The results showed that substitution of GBFS and FA by WCT in the GPMs could enhance their bond strength, mechanical characteristics, and durability performance when exposed to aggressive environments. In addition, with the increase in WCT contents from 50 to 70%, the bond strength performance of the GPMs was considerably enhanced under sulfuric acid and sulfate attack. The achieved GPMs were shown to be highly compatible with the concrete substrate and excellent binders for various civil engineering construction applications. It is affirmed that the proposed GPMs can efficiently be used as high-performance materials to repair damaged concrete surfaces.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...