Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Semin Immunopathol ; 45(3): 315-327, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36446955

RESUMO

B cells, also known as B lymphocytes or lymphoid lineage cells, are a historically understudied cell population with regard to brain-related injuries and diseases. However, an increasing number of publications have begun to elucidate the different phenotypes and roles B cells can undertake during central nervous system (CNS) pathology, including following ischemic and hemorrhagic stroke. B cell phenotype is intrinsically linked to function following stroke, as they may be beneficial or detrimental depending on the subset, timing, and microenvironment. Factors such as age, sex, and presence of co-morbidity also influence the behavior of post-stroke B cells. The following review will briefly describe B cells from origination to senescence, explore B cell function by integrating decades of stroke research, differentiate between the known B cell subtypes and their respective activity, discuss some of the physiological influences on B cells as well as the influence of B cells on certain physiological functions, and highlight the differences between B cells in healthy and disease states with particular emphasis in the context of ischemic stroke.


Assuntos
Acidente Vascular Cerebral , Humanos , Acidente Vascular Cerebral/patologia , Linfócitos B
2.
Proc Natl Acad Sci U S A ; 117(9): 4983-4993, 2020 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-32051245

RESUMO

Lymphocytes infiltrate the stroke core and penumbra and often exacerbate cellular injury. B cells, however, are lymphocytes that do not contribute to acute pathology but can support recovery. B cell adoptive transfer to mice reduced infarct volumes 3 and 7 d after transient middle cerebral artery occlusion (tMCAo), independent of changing immune populations in recipient mice. Testing a direct neurotrophic effect, B cells cocultured with mixed cortical cells protected neurons and maintained dendritic arborization after oxygen-glucose deprivation. Whole-brain volumetric serial two-photon tomography (STPT) and a custom-developed image analysis pipeline visualized and quantified poststroke B cell diapedesis throughout the brain, including remote areas supporting functional recovery. Stroke induced significant bilateral B cell diapedesis into remote brain regions regulating motor and cognitive functions and neurogenesis (e.g., dentate gyrus, hypothalamus, olfactory areas, cerebellum) in the whole-brain datasets. To confirm a mechanistic role for B cells in functional recovery, rituximab was given to human CD20+ (hCD20+) transgenic mice to continuously deplete hCD20+-expressing B cells following tMCAo. These mice experienced delayed motor recovery, impaired spatial memory, and increased anxiety through 8 wk poststroke compared to wild type (WT) littermates also receiving rituximab. B cell depletion reduced stroke-induced hippocampal neurogenesis and cell survival. Thus, B cell diapedesis occurred in areas remote to the infarct that mediated motor and cognitive recovery. Understanding the role of B cells in neuronal health and disease-based plasticity is critical for developing effective immune-based therapies for protection against diseases that involve recruitment of peripheral immune cells into the injured brain.


Assuntos
Encéfalo/metabolismo , Movimento Celular/fisiologia , Neurogênese/fisiologia , Recuperação de Função Fisiológica/fisiologia , Acidente Vascular Cerebral/metabolismo , Imunidade Adaptativa , Animais , Linfócitos B/metabolismo , Encéfalo/patologia , Cognição , Giro Denteado/metabolismo , Modelos Animais de Doenças , Humanos , Infarto da Artéria Cerebral Média , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Plasticidade Neuronal , Neurônios/metabolismo
3.
Discov Med ; 19(106): 381-92, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-26105701

RESUMO

Stroke affects millions of people worldwide every year. Despite this prevalence, mechanisms of long-term injury and repair within the ischemic brain are still understudied. Sterile inflammation occurs in the injured brain after stroke, with damaged tissue exposing central nervous system (CNS)-derived antigen that could initiate potential autoimmune responses. We used a standard immunology-based recall response assay for murine immune cells, isolated from the cervical lymph nodes and spleen after transient stroke, to determine if stroke induces autoreactivity to CNS target antigens. Our assays included novel neuronal peptides, in addition to myelin-, nuclear-, glial-, and endothelial-derived peptides. Autoimmune responses to an antigen were considered positive based on proliferation and activation over non-stimulated conditions. Stroke induced a significant increase in autoreactive CD4+ and CD8+ T cells, as well as autoreactive CD19+ B cells, as early as 4 days after stroke onset. Mice with large infarct volumes exhibited early T and B cell autoreactivity to NR2A, an NMDA receptor subunit, in cells isolated from lymph nodes but not spleen. Mice with small infarct volumes exhibited high autoreactivity to MAP2, a dendritic cytoskeletal protein, as well as myelin-derived peptides. This autoimmunity was maintained through 10 days post-stroke in both lymph nodes and spleen for all lymphocyte subsets. Sham surgery also induced early autoreactive B cell responses to MAP2 and myelin. Based on these observations, we hypothesize that stroke induces a secondary, complex, and dynamic autoimmune response to neuronal antigens with the potential to potentiate, or perhaps even ameliorate, long-term neuroinflammation.


Assuntos
Imunidade Adaptativa/imunologia , Antígenos/imunologia , Autoimunidade/imunologia , Neurônios/metabolismo , Acidente Vascular Cerebral/imunologia , Sequência de Aminoácidos , Animais , Linfócitos B/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Humanos , Linfonodos , Masculino , Camundongos , Dados de Sequência Molecular , Bainha de Mielina/metabolismo , Peptídeos/química , Recuperação de Função Fisiológica , Baço/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...