Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Pollut ; 336: 122352, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37562525

RESUMO

Biomass depletion caused by overfishing is likely to alter the structure of food webs and impact mercury transfer to marine predators. Although marine protected areas (MPAs) are spared from fishing pressure, their influence on biota mercury levels is poorly understood. Here, we used carbon and nitrogen stable isotope compositions as well as mercury concentrations in fin clips to characterize foraging habitat and mercury exposure of a shark community composed of migratory and resident species of the Revillagigedo archipelago, an offshore MPA in the Northeast Pacific off Mexico. We found that the probability of finding migratory sharks in the isotopic niche of Revillagigedo-resident sharks was low, likely reflecting the use of habitats outside the archipelago by highly mobile species. Community-wide variations in mercury were primarily explained by shark length, revealing that bioaccumulation was the main driver of Hg concentrations. We failed to detect a clear effect of foraging habitat on shark mercury exposure, which may be related to migratory species using both exploited and protected areas when moving outside the Revillagigedo MPA. More similar studies on the potential mitigation of Hg contamination by MPAs are needed in the future if fishing pressure increases to satisfy the growing global human population.

2.
Ecotoxicology ; 32(8): 994-1009, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37328690

RESUMO

Humans are exposed to toxic methylmercury mainly by consuming marine fish. The Minamata Convention aims at reducing anthropogenic mercury releases to protect human and ecosystem health, employing monitoring programs to meet its objectives. Tunas are suspected to be sentinels of mercury exposure in the ocean, though not evidenced yet. Here, we conducted a literature review of mercury concentrations in tropical tunas (bigeye, yellowfin, and skipjack) and albacore, the four most exploited tunas worldwide. Strong spatial patterns of tuna mercury concentrations were shown, mainly explained by fish size, and methylmercury bioavailability in marine food web, suggesting that tunas reflect spatial trends of mercury exposure in their ecosystem. The few mercury long-term trends in tunas were contrasted and sometimes disconnected to estimated regional changes in atmospheric emissions and deposition, highlighting potential confounding effects of legacy mercury, and complex reactions governing the fate of mercury in the ocean. Inter-species differences of tuna mercury concentrations associated with their distinct ecology suggest that tropical tunas and albacore could be used complementarily to assess the vertical and horizontal variability of methylmercury in the ocean. Overall, this review elevates tunas as relevant bioindicators for the Minamata Convention, and calls for large-scale and continuous mercury measurements within the international community. We provide guidelines for tuna sample collection, preparation, analyses and data standardization with recommended transdisciplinary approaches to explore tuna mercury content in parallel with observation abiotic data, and biogeochemical model outputs. Such global and transdisciplinary biomonitoring is essential to explore the complex mechanisms of the marine methylmercury cycle.


Assuntos
Mercúrio , Compostos de Metilmercúrio , Animais , Humanos , Mercúrio/análise , Atum , Compostos de Metilmercúrio/análise , Biomarcadores Ambientais , Ecossistema , Peixes , Oceanos e Mares
3.
Mar Pollut Bull ; 192: 115095, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37295256

RESUMO

Estuaries in Brazil are mostly anthropically affected due to the discharge of industrial and domestic effluents. In two of them, the Santa Cruz Channel Estuary (ITAP) and Sirinhaém River Estuary (SIR), historically affected by mercury pollution and sugarcane industry in Northeast Brazil, we assessed environmental pollution using liver and gill histopathological biomarkers in fish from different trophic levels. Liver samples exhibited serious damages such as hepatic steatosis, necrosis, and infiltration. The gills showed moderate to severe changes, such as lifting of epithelial cells, lamellar aneurysm, and rupture of lamellar epithelium. Most of the changes in the liver and gills were reported for species Centropomus undecimalis and the Gobionellus stomatus, which were considered as good sentinels of pollution. The combination of biomarker methodologies was efficient in diagnosing the serious damage to the species, reinforcing the need for monitoring the health of the ecosystems evaluated.


Assuntos
Perciformes , Poluentes Químicos da Água , Animais , Estuários , Ecossistema , Brasil , Peixes , Poluição Ambiental , Biomarcadores , Monitoramento Ambiental , Poluentes Químicos da Água/análise , Brânquias/química
4.
Environ Int ; 174: 107891, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36963155

RESUMO

Anthropogenic mercury (Hg) emissions have increased significantly since the Industrial Revolution, resulting in severe health impacts to humans. The consumptions of fish and rice were primary human methylmercury (MeHg) exposure pathways in Asia. However, the lifecycle from anthropogenic Hg emissions to human MeHg exposure is not fully understood. In this study, a recently developed approach, termed MeHg Compound-Specific Isotope Analysis (CSIA), was employed to track lifecycle of Hg in four typical Hg-emission areas. Distinct Δ199Hg of MeHg and inorganic Hg (IHg) were observed among rice, fish and hair. The Δ199Hg of MeHg averaged at 0.07 ± 0.15 ‰, 0.80 ± 0.55 ‰ and 0.43 ± 0.29 ‰ in rice, fish and hair, respectively, while those of IHg averaged at - 0.08 ± 0.24 ‰, 0.85 ± 0.43 ‰ and - 0.28 ± 0.68 ‰. In paddy ecosystem, Δ199Hg of MeHg in rice showed slightly positive shifts (∼0.2 ‰) from those of IHg, and comparable Δ199Hg of IHg between rice grain and raw/processed materials (coal, Hg ore, gold ore and sphalerite) were observed. Simultaneously, it was proved that IHg in fish muscle was partially derived from in vivo demethylation of MeHg. By a binary model, we estimated the relative contributions of rice consumption to human MeHg exposure to be 84 ± 14 %, 58 ± 26 %, 52 ± 20 % and 34 ± 15 % on average in Hg mining area, gold mining area, zinc smelting area and coal-fired power plant area, respectively, and positive shifts of δ202HgMeHg from fish/rice to human hair occurred during human metabolic processes. Therefore, the CSIA approach can be an effective tool for tracking Hg biogeochemical cycle and human exposure, from which new scientific knowledge can be generated to support Hg pollution control policies and to protect human health.


Assuntos
Mercúrio , Compostos de Metilmercúrio , Oryza , Animais , Humanos , Mercúrio/análise , Ecossistema , Monitoramento Ambiental , Compostos de Metilmercúrio/análise , Isótopos/análise , Oryza/metabolismo , Peixes/metabolismo , Carvão Mineral/análise
5.
Anal Bioanal Chem ; 415(15): 2937-2946, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36847794

RESUMO

Microplastics (MPs) have become one of the major global environmental issues in recent decades due to their ubiquity in the environment. Understanding MPs source origin and reactivity is urgently needed to better constrain their fate and budget. Despite improvements in analytical methods to characterize MPs, new tools are needed to help understand their sources and reactivity in a complex environment. In this work, we developed and applied an original Purge-&-Trap system coupled to a GC-MS-C-IRMS to explore the δ13C compound-specific stable isotope analysis (CSIA) of volatile organic compounds (VOC) embedded in MPs. The method consists of heating and purging MP samples, with VOCs being cryo-trapped on a Tenax sorbent, followed by GC-MS-C-IRMS analysis. The method was developed using a polystyrene plastic material showing that sample mass and heating temperature increased the sensitivity while not influencing VOC δ13C values. This robust, precise, and accurate methodology allows VOC identification and δ13C CSIA in plastic materials in the low nanogram concentration range. Results show that the monomer styrene displays a different δ13C value (- 22.2 ± 0.2‰), compared to the δ13C value of the bulk polymer sample (- 27.8 ± 0.2‰). This difference could be related to the synthesis procedure and/or diffusion processes. The analysis of complementary plastic materials such as polyethylene terephthalate, and polylactic acid displayed unique VOC δ13C patterns, with toluene showing specific δ13C values for polystyrene (- 25.9 ± 0.1‰), polyethylene terephthalate (- 28.4 ± 0.5‰), and polylactic acid (- 38.7 ± 0.5‰). These results illustrate the potential of VOC δ13C CSIA in MP research to fingerprint plastic materials, and to improve our understanding of their source cycle. Further studies in the laboratory are needed to determine the main mechanisms responsible for MPs VOC stable isotopic fractionation.

6.
Mar Pollut Bull ; 184: 114053, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36152493

RESUMO

Trace elements and δ15N values were analysed in micronekton (crustaceans, fishes and squids) sampled in the south-western Indian Ocean. Myctophids were associated with high concentrations of arsenic at La Pérouse and MAD-Ridge seamounts, and with lead and manganese at MAD-Ridge and in the Mozambique Channel. The difference in cadmium, copper and zinc concentrations between micronekton broad categories reflected differing metabolic and storage processes. When significant, negative relationships were found between micronekton body size and trace element concentrations, which can possibly be attributed to differing metabolic activity in young and old individuals, dietary shifts and/or dilution effect of growth. No relationships were found between trace element concentrations and δ15N values of micronekton (except cobalt which decreased with increasing δ15N values), since most trace elements are not biomagnified in food webs due to regulation and excretion processes within organisms. All trace element pairs were positively correlated in fishes suggesting regulation processes.


Assuntos
Arsênio , Oligoelementos , Animais , Oligoelementos/análise , Cobre/análise , Cádmio/análise , Manganês/análise , Arsênio/análise , Oceano Índico , Peixes/metabolismo , Zinco/análise , Cobalto/análise
7.
Mar Pollut Bull ; 181: 113892, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35810652

RESUMO

Oxygen minimum zones (OMZs) are currently expanding across the global ocean due to climate change, leading to a compression of usable habitat for several marine species. Mercury stable isotope compositions provide a spatially and temporally integrated view of marine predator foraging habitat and its variability with environmental conditions. Here, we analyzed mercury isotopes in blue sharks Prionace glauca from normoxic waters in the northeastern Atlantic and from the world's largest and shallowest OMZ, located in the northeastern Pacific (NEP). Blue sharks from the NEP OMZ area showed higher Δ199Hg values compared to sharks from the northeastern Atlantic, indicating a reduction in foraging depth of approximately 200 m. Our study suggests for the first time that blue shark feeding depth is altered by expanding OMZs and illustrates the use of mercury isotopes to assess the impacts of ocean deoxygenation on the vertical foraging habitat of pelagic predators.


Assuntos
Mercúrio , Tubarões , Animais , Isótopos , Isótopos de Mercúrio , Oxigênio
8.
Mar Pollut Bull ; 180: 113801, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35671615

RESUMO

Understanding the relationship between mercury in seafood and the distribution of oceanic methylmercury is key to understand human mercury exposure. Here, we determined mercury concentrations in muscle and blood of bigeye and yellowfin tunas from the Western and Central Pacific. Results showed similar latitudinal patterns in tuna blood and muscle, indicating that both tissues are good candidates for mercury monitoring. Complementary tuna species analyses indicated species- and tissue- specific mercury patterns, highlighting differences in physiologic processes of mercury uptake and accumulation associated with tuna vertical habitat. Tuna mercury content was correlated to ambient seawater methylmercury concentrations, with blood being enriched at a higher rate than muscle with increasing habitat depth. The consideration of a significant uptake of dissolved methylmercury from seawater in tuna, in addition to assimilation from food, might be interesting to test in models to represent the spatiotemporal evolutions of mercury in tuna under different mercury emission scenarios.


Assuntos
Mercúrio , Compostos de Metilmercúrio , Animais , Humanos , Mercúrio/análise , Compostos de Metilmercúrio/análise , Músculos/química , Oceano Pacífico , Água do Mar , Atum
9.
Mar Pollut Bull ; 177: 113481, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35245770

RESUMO

Assessing mercury (Hg) biomagnification requires the description of prey-predator relationships, for each species and ecosystem, usually based on carbon and nitrogen isotope analyses. Here, we analyzed two seabirds from the Humboldt Current ecosystem, the Guanay cormorant (Phalacrocorax bougainvillii) and the Peruvian booby (Sula variegata), as well as their main prey, the Peruvian anchovy (Engraulis ringens). We reported Hg concentrations, Hg biomagnification (BMF) and isotopic discrimination factors (Δ13C and Δ15N) in seabird whole blood. BMFs and Δ13C in our study (on wild birds where diet was not controlled) were similar to other piscivorous seabirds previously studied in captive settings, but Δ15N were lower than most captive experiments. We observed lower Hg concentrations in Humboldt seabirds compared to other oligotrophic ecosystems, possibly due to Hg biodilution in the high biomass of the first trophic levels. This work calls for a better characterization of Hg trophic dynamics in productive upwelling ecosystems.


Assuntos
Mercúrio , Animais , Bioacumulação , Aves , Ecossistema , Monitoramento Ambiental , Cadeia Alimentar , Mercúrio/análise , Isótopos de Nitrogênio/análise
10.
Environ Sci Technol ; 56(4): 2258-2268, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35114086

RESUMO

Photochemical reactions are major pathways for the removal of Hg species from aquatic ecosystems, lowering the concentration of monomethylmercury (MMHg) and its bioaccumulation in foodwebs. Here, we investigated the rates and environmental drivers of MMHg photodegradation and inorganic Hg (IHg) photoreduction in waters of two high-altitude lakes from the Bolivian Altiplano representing meso- to eutrophic conditions. We incubated three contrasting waters in situ at two depths after adding Hg-enriched isotopic species to derive rate constants. We found that transformations mostly occurred in subsurface waters exposed to UV radiation and were mainly modulated by the dissolved organic matter (DOM) level. In parallel, we incubated the same waters after the addition of low concentrations of natural MMHg and followed the stable isotope composition of the remaining Hg species by compound-specific isotope analysis allowing the determination of enrichment factors and mass-independent fractionation (MIF) slopes (Δ199Hg/Δ201Hg) during in situ MMHg photodegradation in natural waters. We found that MIF enrichment factors potentially range from -11 to -19‰ and average -14.3 ± 0.6‰ (1 SE). The MIF slope diverged depending on the DOM level, ranging from 1.24 ± 0.03 to 1.34 ± 0.02 for the low and high DOM waters, respectively, and matched the MMHg MIF slope recorded in fish from the same lake. Our in situ results thus reveal (i) a relatively similar extent of Hg isotopic fractionation during MMHg photodegradation among contrasted natural waters and compared to previous laboratory experiments and (ii) that the MMHg MIF recorded in fish is characteristic for the MMHg bonding environment. They will enable a better assessment of the extent and conditions conducive to MMHg photodegradation in aquatic ecosystems.


Assuntos
Mercúrio , Compostos de Metilmercúrio , Poluentes Químicos da Água , Altitude , Animais , Bolívia , Ecossistema , Monitoramento Ambiental , Peixes/metabolismo , Isótopos , Lagos/química , Mercúrio/análise , Isótopos de Mercúrio/análise , Compostos de Metilmercúrio/metabolismo , Água/metabolismo , Poluentes Químicos da Água/análise
11.
J Hazard Mater ; 425: 127956, 2022 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-34986563

RESUMO

Large marine predators exhibit high concentrations of mercury (Hg) as neurotoxic methylmercury, and the potential impacts of global change on Hg contamination in these species remain highly debated. Current contaminant model predictions do not account for intraspecific variability in Hg exposure and may fail to reflect the diversity of future Hg levels among conspecific populations or individuals, especially for top predators displaying a wide range of ecological traits. Here, we used Hg isotopic compositions to show that Hg exposure sources varied significantly between and within three populations of white sharks (Carcharodon carcharias) with contrasting ecology: the north-eastern Pacific, eastern Australasian, and south-western Australasian populations. Through Δ200Hg signatures in shark tissues, we found that atmospheric Hg deposition pathways to the marine environment differed between coastal and offshore habitats. Discrepancies in δ202Hg and Δ199Hg signatures among white sharks provided evidence for intraspecific exposure to distinct sources of marine methylmercury, attributed to population and ontogenetic shifts in foraging habitat and prey composition. We finally observed a strong divergence in Hg accumulation rates between populations, leading to three times higher Hg concentrations in large Australasian sharks compared to north-eastern Pacific sharks, and likely due to different trophic strategies adopted by adult sharks across populations. This study illustrates the variety of Hg exposure sources and bioaccumulation patterns that can be found within a single species and suggests that intraspecific variability needs to be considered when assessing future trajectories of Hg levels in marine predators.


Assuntos
Mercúrio , Tubarões , Animais , Bioacumulação , Ecossistema , Peixes , Cadeia Alimentar , Humanos , Alimentos Marinhos
12.
Proc Natl Acad Sci U S A ; 119(2)2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-34983875

RESUMO

Pacific Ocean tuna is among the most-consumed seafood products but contains relatively high levels of the neurotoxin methylmercury. Limited observations suggest tuna mercury levels vary in space and time, yet the drivers are not well understood. Here, we map mercury concentrations in skipjack tuna across the Pacific Ocean and build generalized additive models to quantify the anthropogenic, ecological, and biogeochemical drivers. Skipjack mercury levels display a fivefold spatial gradient, with maximum concentrations in the northwest near Asia, intermediate values in the east, and the lowest levels in the west, southwest, and central Pacific. Large spatial differences can be explained by the depth of the seawater methylmercury peak near low-oxygen zones, leading to enhanced tuna mercury concentrations in regions where oxygen depletion is shallow. Despite this natural biogeochemical control, the mercury hotspot in tuna caught near Asia is explained by elevated atmospheric mercury concentrations and/or mercury river inputs to the coastal shelf. While we cannot ignore the legacy mercury contribution from other regions to the Pacific Ocean (e.g., North America and Europe), our results suggest that recent anthropogenic mercury release, which is currently largest in Asia, contributes directly to present-day human mercury exposure.


Assuntos
Mercúrio/análise , Compostos de Metilmercúrio/análise , Atum , Animais , Ásia , Ecologia , Monitoramento Ambiental/métodos , Europa (Continente) , Cadeia Alimentar , Sedimentos Geológicos/química , Humanos , Metilação , Modelos Teóricos , América do Norte , Oceano Pacífico , Alimentos Marinhos , Água do Mar , Poluentes da Água , Poluentes Químicos da Água/análise
13.
Mar Pollut Bull ; 174: 113151, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34883442

RESUMO

Mercury (Hg) concentrations and stable isotope values (δ13C and δ15N) were investigated in micronekton collected from La Pérouse and MAD-Ridge seamounts, Reunion Island and the southern Mozambique Channel. Organisms occupying epipelagic habitats showed lower Hg concentrations relative to deeper dwelling benthopelagic ones. Increasing Hg concentrations with increasing body size were recorded in the Mozambique Channel and Reunion Island. Positive relationships were observed between Hg levels and δ15N values in pelagic nekton assemblages collected at MAD-Ridge seamount and the southern Mozambique Channel, suggesting biomagnification of Hg. Concentrations of Hg in organisms across the south-western Indian Ocean were within the same range of values. Total Hg concentrations depend on a range of factors linked to habitat range, body size and trophic position of the individuals. To our knowledge, this is the first study investigating the patterns of Hg concentrations in pelagic nekton assemblages from the south-western Indian Ocean.


Assuntos
Mercúrio , Poluentes Químicos da Água , Monitoramento Ambiental , Cadeia Alimentar , Humanos , Oceano Índico , Mercúrio/análise , Isótopos de Nitrogênio/análise , Poluentes Químicos da Água/análise
14.
Environ Sci Technol ; 55(23): 15754-15765, 2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34797644

RESUMO

Climate change is expected to affect marine mercury (Hg) biogeochemistry and biomagnification. Recent modeling work suggested that ocean warming increases methylmercury (MeHg) levels in fish. Here, we studied the influence of El Niño Southern Oscillations (ENSO) on Hg concentrations and stable isotopes in time series of seabird blood from the Peruvian upwelling and oxygen minimum zone. Between 2009 and 2016, La Niña (2011) and El Niño conditions (2015-2016) were accompanied by sea surface temperature anomalies up to 3 °C, oxycline depth change (20-100 m), and strong primary production gradients. Seabird Hg levels were stable and did not co-vary significantly with oceanographic parameters, nor with anchovy biomass, the primary dietary source to seabirds (90%). In contrast, seabird Δ199Hg, proxy for marine photochemical MeHg breakdown, and δ15N showed strong interannual variability (up to 0.8 and 3‰, respectively) and sharply decreased during El Niño. We suggest that lower Δ199Hg during El Niño represents reduced MeHg photodegradation due to the deepening of the oxycline. This process was balanced by equally reduced Hg methylation due to reduced productivity, carbon export, and remineralization. The non-dependence of seabird MeHg levels on strong ENSO variability suggests that marine predator MeHg levels may not be as sensitive to climate change as is currently thought.


Assuntos
Mercúrio , Compostos de Metilmercúrio , Poluentes Químicos da Água , Animais , Aves , El Niño Oscilação Sul , Monitoramento Ambiental , Mercúrio/análise , Peru , Poluentes Químicos da Água/análise
15.
Nature ; 597(7878): 678-682, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34588669

RESUMO

Human exposure to toxic mercury (Hg) is dominated by the consumption of seafood1,2. Earth system models suggest that Hg in marine ecosystems is supplied by atmospheric wet and dry Hg(II) deposition, with a three times smaller contribution from gaseous Hg(0) uptake3,4. Observations of marine Hg(II) deposition and Hg(0) gas exchange are sparse, however5, leaving the suggested importance of Hg(II) deposition6 ill-constrained. Here we present the first Hg stable isotope measurements of total Hg (tHg) in surface and deep Atlantic and Mediterranean seawater and use them to quantify atmospheric Hg deposition pathways. We observe overall similar tHg isotope compositions, with median Δ200Hg signatures of 0.02‰, lying in between atmospheric Hg(0) and Hg(II) deposition end-members. We use a Δ200Hg isotope mass balance to estimate that seawater tHg can be explained by the mixing of 42% (median; interquartile range, 24-50%) atmospheric Hg(II) gross deposition and 58% (50-76%) Hg(0) gross uptake. We measure and compile additional, global marine Hg isotope data including particulate Hg, sediments and biota and observe a latitudinal Δ200Hg gradient that indicates larger ocean Hg(0) uptake at high latitudes. Our findings suggest that global atmospheric Hg(0) uptake by the oceans is equal to Hg(II) deposition, which has implications for our understanding of atmospheric Hg dispersal and marine ecosystem recovery.

16.
Environ Sci Technol ; 55(18): 12493-12503, 2021 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-34468125

RESUMO

Monomethylmercury (MMHg) exposure can induce adverse neurodevelopmental effects in humans and is a global environmental health concern. Human exposure to MMHg occurs predominately through the consumption of fishery foods and rice in Asia, but it is challenging to quantify these two exposure sources. Here, we innovatively utilized MMHg compound-specific stable isotope analyses (MMHg-CSIA) of the hair to quantify the human MMHg sources in coastal and inland areas, where fishery foods and rice are routinely consumed. Our data showed that the fishery foods and rice end members had distinct Δ199HgMMHg values in both coastal and inland areas. The Δ199HgMMHg values of the human hair were comparable to those of fishery foods but not those of rice. Positive shifts in the δ202HgMMHg values of the hair from diet were observed in the study areas. Additionally, significant differences in δ202Hg versus Δ199Hg were detected between MMHg and inorganic Hg (IHg) in the human hair but not in fishery foods and rice. A binary mixing model was developed to estimate the human MMHg exposures from fishery foods and rice using Δ199HgMMHg data. The model results suggested that human MMHg exposures were dominated (>80%) by fishery food consumption and were less affected by rice consumption in both the coastal and inland areas. This study demonstrated that the MMHg-CSIA method can provide unique information for tracking human MMHg exposure sources by excluding the deviations from dietary surveys, individual MMHg absorption/demethylation efficiencies, and the confounding effects of IHg.


Assuntos
Mercúrio , Compostos de Metilmercúrio , Oryza , Monitoramento Ambiental , Cabelo/química , Humanos , Isótopos , Mercúrio/análise
17.
Mar Environ Res ; 169: 105385, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34119917

RESUMO

Tropical tunas are largely consumed worldwide, providing major nutritional benefits to humans, but also representing the main exposure to methylmercury, a potent neurotoxin that biomagnifies along food webs. The combination of ecological tracers (nitrogen and carbon stable isotopes, δ15N and δ13C) to mercury concentrations in tunas is scarce yet crucial to better characterize the influence of tuna foraging ecology on mercury exposure and bioaccumulation. Given the difficulties to get modern and historical tuna samples, analyses have to be done on available and unique samples. However, δ13C values are often analysed on lipid-free samples to avoid bias related to lipid content. While lipid extraction with non-polar solvents is known to have no effect on δ15N values, its impact on mercury concentrations is still unclear. We used white muscle tissues of three tropical tuna species to evaluate the efficiency and repeatability of different lipid extraction protocols commonly used in δ13C and δ15N analysis. Dichloromethane was more efficient than cyclohexane in extracting lipids in tuna muscle, while the automated method appeared more efficient but as repeatable as the manual method. Lipid extraction with dichloromethane had no effect on mercury concentrations. This may result from i) the affinity of methylmercury to proteins in tuna flesh, ii) the low lipid content in tropical tuna muscle samples, and iii) the non-polar nature of dichloromethane. Our study suggests that lipid-free samples, usually prepared for tropical tuna foraging ecology research, can be used equivalently to bulk samples to document in parallel mercury concentrations at a global scale.


Assuntos
Mercúrio , Compostos de Metilmercúrio , Animais , Humanos , Lipídeos , Músculos , Atum
18.
Environ Pollut ; 283: 117066, 2021 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-33892372

RESUMO

The decline of shark populations in the world ocean is affecting ecosystem structure and function in an unpredictable way and new ecological information is today needed to better understand the role of sharks in their habitats. In particular, the characterization of foraging patterns is crucial to understand and foresee the evolution of dynamics between sharks and their prey. Many shark species use the mesopelagic area as a major foraging ground but the degree to which different pelagic sharks rely on this habitat remains overlooked. In order to depict the vertical dimension of their trophic ecology, we used mercury stable isotopes in the muscle of three pelagic shark species (the blue shark Prionace glauca, the shortfin mako shark Isurus oxyrinchus and the smooth hammerhead shark Sphyrna zygaena) from the northeastern Pacific region. The Δ199Hg values, ranging from 1.40 to 2.13‰ in sharks, suggested a diet mostly based on mesopelagic prey in oceanic habitats. We additionally used carbon and nitrogen stable isotopes (δ13C, δ15N) alone or in combination with Δ199Hg values, to assess resource partitioning between the three shark species. Adding Δ199Hg resulted in a decrease in trophic overlap estimates compared to those based on δ13C/δ15N alone, demonstrating that multi-isotope modeling is needed for accurate trophic description of the three species. Mainly, it reveals that they forage at different average depths and that resource partitioning is mostly expressed through the vertical dimension within pelagic shark assemblages. Concomitantly, muscle total mercury concentration (THg) differed between species and increased with feeding depth. Overall, this study highlights the key role of the mesopelagic zone for shark species foraging among important depth gradients and reports new ecological information on trophic competition using mercury isotopes. It also suggests that foraging depth may play a pivotal role in the differences between muscle THg from co-occurring high trophic level shark species.


Assuntos
Mercúrio , Tubarões , Animais , Isótopos de Carbono , Ecossistema , Cadeia Alimentar , Isótopos de Mercúrio , Isótopos de Nitrogênio/análise , Alimentos Marinhos
19.
Ecotoxicol Environ Saf ; 215: 112122, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33725489

RESUMO

The human ingestion of mercury (Hg) from sea food is of big concern worldwide due to adverse health effects, and more specifically if shark consumption constitutes a regular part of the human diet. In this study, the total mercury (THg) concentration in muscle tissue were determined in six sympatric shark species found in a fishing vessel seized in the Galapagos Marine Reserve in 2017. The THg concentrations in shark muscle samples (n = 73) varied from 0.73 mg kg-1 in bigeye thresher sharks (Alopias superciliosus) to 8.29 mg kg-1 in silky sharks (Carcharhinus falciformis). A typical pattern of Hg bioaccumulation was observed for all shark species, with significant correlation between THg concentration and shark size for bigeye thresher sharks, pelagic thresher sharks (Alopias pelagicus) and silky sharks. Regarding human health concerns, the THg mean concentration exceeded the maximum weekly intake fish serving in all the studied species. Mass-Dependent Fractionation (MDF, δ202Hg values) and Mass-Independent Fractionation (MIF, Δ199Hg values) of Hg in whitetip sharks (Carcharhinus longimanus) and silky sharks, ranged from 0.70‰ to 1.08‰, and from 1.97‰ to 2.89‰, respectively. These high values suggest that both species are feeding in the epipelagic zone (i.e. upper 200 m of the water column). While, blue sharks (Prionace glauca), scalloped hammerhead sharks (Shyrna lewini) and thresher sharks were characterized by lower Δ199Hg and δ202Hg values, indicating that these species may focus their foraging behavior on prey of mesopelagic zone (i.e. between 200 and 1000 m depth). In conclusion, the determination of THg concentration provides straight-forward evidence of the human health risks associated with shark consumption, while mercury isotopic compositions constitute a powerful tool to trace the foraging strategies of these marine predators. CAPSULE: A double approach combining Hg concentrations with stable isotopes ratios allowed to assess ontogeny in common shark species in the area of the Galapagos Marine Reserve and the human health risks concern associated to their consumption.


Assuntos
Mercúrio/metabolismo , Tubarões/metabolismo , Poluentes Químicos da Água/metabolismo , Animais , Bioacumulação , Monitoramento Ambiental/métodos , Comportamento Alimentar , Humanos , Isótopos , Mercúrio/análise , Isótopos de Mercúrio , Músculos/química , Alimentos Marinhos , Tubarões/fisiologia , Poluentes Químicos da Água/análise
20.
Chemosphere ; 263: 128024, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33297047

RESUMO

Global anthropogenic mercury (Hg) emissions to the atmosphere since industrialization are widely considered to be responsible for a significant increase in surface ocean Hg concentrations. Still unclear is how those inputs are converted into toxic methylmercury (MeHg) then transferred and biomagnified in oceanic food webs. We used a unique long-term and continuous dataset to explore the temporal Hg trend and variability of three tropical tuna species (yellowfin, bigeye, and skipjack) from the southwestern Pacific Ocean between 2001 and 2018 (n = 590). Temporal trends of muscle nitrogen (δ15N) and carbon (δ13C) stable isotope ratios, amino acid (AA) δ15N values and oceanographic variables were also investigated to examine the potential influence of trophic, biogeochemical and physical processes on the temporal variability of tuna Hg concentrations. For the three species, we detected significant inter-annual variability but no significant long-term trend for Hg concentrations. Inter-annual variability was related to the variability in tuna sampled lengths among years and to tuna muscle δ15N and δ13C values. Complementary AA- and model-estimated phytoplankton δ15N values suggested the influence of baseline processes with enhanced tuna Hg concentrations observed when dinitrogen fixers prevail, possibly fuelling baseline Hg methylation and/or MeHg bioavailability at the base of the food web. Our results show that MeHg trends in top predators do not necessary capture the increasing Hg concentrations in surface waters suspected at the global oceanic scale due to the complex and variable processes governing Hg deposition, methylation, bioavailability and biomagnification. This illustrates the need for long-term standardized monitoring programs of marine biota worldwide.


Assuntos
Mercúrio , Poluentes Químicos da Água , Animais , Monitoramento Ambiental , Cadeia Alimentar , Mercúrio/análise , Oceanos e Mares , Oceano Pacífico , Atum , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...