Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Food Microbiol ; 53(Pt A): 18-29, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26611166

RESUMO

Streptococcus thermophilus, a lactic acid bacterium used to produce yogurts and cheeses is more and more considered for its potential probiotic properties. This implies that additional information should be obtained regarding its survival and metabolic activity in the human Gastro-Intestinal Tract (GIT). In this study, we screened 30 S. thermophilus strains for urease, small heat shock protein, and amino-acid decarboxylase functions which may play a role in survival in the upper part of the GIT. The survival kinetics of 4 strains was investigated using the TIM, a physiologically relevant in vitro dynamic gastric and small intestinal model. The three strains LMD9, PB18O and EBLST20 showed significantly higher survival than CNRZ21 in all digestive compartments of the TIM, which may be related to the presence of urease and heat shock protein functions. When LMD9 bacterial cells were delivered in a fermented milk formula, a significant improvement of survival in the TIM was observed compared to non-fermented milk. With the RIVET (Recombinase In Vivo Expression Technology) method applied to the LMD9 strain, a promoter located upstream of hisS, responsible for the histidyl-transfer RNA synthesis, was found to be specifically activated in the artificial stomach. The data generated on S. thermophilus survival and its adaptation capacities to the digestive tract are essential to establish a list of biomarkers useful for the selection of probiotic strains.


Assuntos
Viabilidade Microbiana , Streptococcus thermophilus/fisiologia , Trato Gastrointestinal Superior/metabolismo , Trato Gastrointestinal Superior/microbiologia , Iogurte/microbiologia , Adaptação Fisiológica , Animais , Digestão , Ácido Gástrico/metabolismo , Genes Bacterianos , Humanos , Leite/microbiologia , Modelos Anatômicos , Probióticos/metabolismo , Streptococcus thermophilus/genética , Streptococcus thermophilus/metabolismo , Urease/metabolismo
2.
J Agric Food Chem ; 60(2): 554-65, 2012 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-22103626

RESUMO

Milk proteins contain numerous potential bioactive peptides, which may be released by digestive proteases or by the proteolytic system of lactic acid bacteria during food processing. The capacity of Streptococcus thermophilus to generate peptides, especially bioactive peptides, from bovine caseins was investigated. Strains expressing various levels of the cell envelope proteinase, PrtS, were incubated with α(s1)-, α(s2)-, or ß-casein. Analysis of the supernatants by LC-ESI-MS/MS showed that the ß-casein was preferentially hydrolyzed, followed by α(s2)-casein and then α(s1)-casein. Numbers and types of peptides released were strain-dependent. Hydrolysis appeared to be linked with the accessibility of different casein regions by protease. Analysis of bonds hydrolyzed in the region 1-23 of α(s1)-casein suggests that PrtS is at least in part responsible for the peptide production. Finally, among the generated peptides, 13 peptides from ß-casein, 5 from α(s2)-casein, and 2 from α(s1)-casein have been reported as bioactive, 15 of them being angiotensin-converting enzyme inhibitors.


Assuntos
Caseínas/química , Caseínas/metabolismo , Peptídeos/análise , Peptídeos/metabolismo , Streptococcus thermophilus/metabolismo , Sequência de Aminoácidos , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Animais , Proteínas de Bactérias/metabolismo , Bovinos , Hidrólise , Dados de Sequência Molecular , Peptídeos/farmacologia , Serina Endopeptidases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...