Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 10: 458, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31057573

RESUMO

Although the impact of sulfur (S) availability on the seed yield and nutritional quality of seeds has been demonstrated, its impact coupled with nitrogen (N) availability remains poorly studied in oilseed rape. A deeper knowledge of S and N interactions on seed yield components and seed quality could improve S and N fertilization management in a sustainable manner. To address this question, our goals were to determine the effects of nine different S fertilization management strategies (i) in interaction with different levels of N fertilization and (ii) according to the timing of application (by delaying and fractionating the S inputs) on agronomic performances and components of seed yield. The impact of these various managements of S and N fertilizations was also investigated on the seed quality with a focus on the composition of SSPs (mainly represented by napins and cruciferins). Our results highlighted synergetic effects on S and N use efficiencies at optimum rates of S and N inputs and antagonistic effects at excessive rates of one of the two elements. The data indicated that adjustment of S and N fertilization may lead to high seed yield and seed protein quality in a sustainable manner, especially in the context of reductions in N inputs. Delaying S inputs improved the seed protein quality by significantly increasing the relative abundance of napin (a SSP rich in S-containing amino acids) and decreasing the level of a cruciferin at 30 kDa (a SSP with low content of S-amino acids). These observations suggest that fractionated or delayed S fertilizer inputs could provide additional insights into the development of N and S management strategies to maintain or improve seed yield and protein quality. Our results also demonstrated that the S% in seeds and the napin:30 kDa-cruciferin ratio are highly dependent on S/N fertilization in relation to S supply. In addition, we observed a strong relationship between S% in seeds and the abundance of napin as well as the napin:30 kDa-cruciferin ratio, suggesting that S% may be used as a relevant index for the determination of protein quality in seeds in terms of S-containing amino acids.

2.
PLoS One ; 13(9): e0204376, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30235325

RESUMO

Because sulfur (S) depletion in soil results in seed yield losses and grain quality degradation, especially in high S-demanding crops such as oilseed rape (Brassica napus L.), monitoring S fertilisation has become a central issue. Crop models can be efficient tools to conduct virtual experiments under different fertilisation management strategies. Using the process-based model SuMoToRI, we aimed to analyse the impact of different S fertilisation strategies coupled with the variablility observed in major plant characteristics in oilseed rape i.e. radiation use efficiency (RUE), carbon (C) allocation to the leaves (ß) and specific leaf area (SLA) on plant performance-driven variables encompassing total biomass (TDW), S in the photosynthetic leaves (QSmobile.GL) and leaf area index (LAIGL). The contrasting S supply conditions differed in the amount of S (5 levels), and the timing of application (at bolting and/or at flowering, which included a fractioned condition). For this purpose, we performed a global sensitivity analysis (GSA) and calculated two sensitivity indices i.e. the Partial Raw Correlation Coefficient (PRCC) and the Sobol index. The results showed that whatever the timing of S supply, TDW, LAIGL and QSmobile.GL increased as S input increased. For a given S supply, there was no difference in TDW, LAIGL and QSmobile.GL between a single and a fractioned supply. Moreover, delaying the supply until flowering reduced the TDW and LAIGL whereas QSmobile.GL increased. Results showed that RUE had the greatest impact on TDW under all levels of S supply and all application timings, followed by ß and SLA. RUE mostly impacted on QSmobile.GL, depending on S supply conditions, whereas it was the parameter with the least impact on LAIGL. Ultimately, our results provide strong evidence of optimised S fertilisation timings and plant characteristics that will guide producers in their agricultural practices by using specific varieties under constrained S fertilisation strategies.


Assuntos
Brassica napus/efeitos dos fármacos , Enxofre/farmacologia , Biomassa , Brassica napus/crescimento & desenvolvimento , Brassica napus/metabolismo , Fertilizantes , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Estações do Ano , Solo/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...