Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 131(23): 231401, 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38134794

RESUMO

The gravitational waves emitted by a perturbed black hole ringing down are well described by damped sinusoids, whose frequencies are those of quasinormal modes. Typically, first-order black hole perturbation theory is used to calculate these frequencies. Recently, it was shown that second-order effects are necessary in binary black hole merger simulations to model the gravitational-wave signal observed by a distant observer. Here, we show that the horizon of a newly formed black hole after the head-on collision of two black holes also shows evidence of nonlinear modes. Specifically, we identify one quadratic mode for the l=2 shear data, and two quadratic ones for the l=4, 6 data in simulations with varying mass ratio and boost parameter. The quadratic mode amplitudes display a quadratic relationship with the amplitudes of the linear modes that generate them.

2.
Living Rev Relativ ; 14(1): 7, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-28179832

RESUMO

This review is concerned with the motion of a point scalar charge, a point electric charge, and a point mass in a specified background spacetime. In each of the three cases the particle produces a field that behaves as outgoing radiation in the wave zone, and therefore removes energy from the particle. In the near zone the field acts on the particle and gives rise to a self-force that prevents the particle from moving on a geodesic of the background spacetime. The self-force contains both conservative and dissipative terms, and the latter are responsible for the radiation reaction. The work done by the self-force matches the energy radiated away by the particle. The field's action on the particle is difficult to calculate because of its singular nature: the field diverges at the position of the particle. But it is possible to isolate the field's singular part and show that it exerts no force on the particle - its only effect is to contribute to the particle's inertia. What remains after subtraction is a regular field that is fully responsible for the self-force. Because this field satisfies a homogeneous wave equation, it can be thought of as a free field that interacts with the particle; it is this interaction that gives rise to the self-force. The mathematical tools required to derive the equations of motion of a point scalar charge, a point electric charge, and a point mass in a specified background spacetime are developed here from scratch. The review begins with a discussion of the basic theory of bitensors (Part I). It then applies the theory to the construction of convenient coordinate systems to chart a neighbourhood of the particle's word line (Part II). It continues with a thorough discussion of Green's functions in curved spacetime (Part III). The review presents a detailed derivation of each of the three equations of motion (Part IV). Because the notion of a point mass is problematic in general relativity, the review concludes (Part V) with an alternative derivation of the equations of motion that applies to a small body of arbitrary internal structure.

3.
Phys Rev Lett ; 94(16): 161103, 2005 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-15904207

RESUMO

The metric of a tidally distorted, nonrotating black hole is presented in a light-cone coordinate system that penetrates the event horizon and possesses a clear geometrical meaning. The metric is expressed as an expansion in powers of r/R<<1, where r is a measure of distance from the black hole and R is the local radius of curvature of the external spacetime; this is assumed to be much larger than M, the mass of the black hole. The metric is calculated up to a remainder of order (r/R)4, and it depends on a family of tidal gravitational fields which characterize the hole's local environment. The coordinate system allows an easy identification of the event horizon, and expressions are derived for its surface gravity and the rates at which the tidal interaction transfers mass and angular momentum to the black hole.

4.
Living Rev Relativ ; 7(1): 6, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-28179866

RESUMO

This review is concerned with the motion of a point scalar charge, a point electric charge, and a point mass in a specified background spacetime. In each of the three cases the particle produces a field that behaves as outgoing radiation in the wave zone, and therefore removes energy from the particle. In the near zone the field acts on the particle and gives rise to a self-force that prevents the particle from moving on a geodesic of the background spacetime. The self-force contains both conservative and dissipative terms, and the latter are responsible for the radiation reaction. The work done by the self-force matches the energy radiated away by the particle. The field's action on the particle is difficult to calculate because of its singular nature: The field diverges at the position of the particle. But it is possible to isolate the field's singular part and show that it exerts no force on the particle - its only effect is to contribute to the particle's inertia. What remains after subtraction is a smooth field that is fully responsible for the self-force. Because this field satisfies a homogeneous wave equation, it can be thought of as a free (radiative) field that interacts with the particle; it is this interaction that gives rise to the self-force. The mathematical tools required to derive the equations of motion of a point scalar charge, a point electric charge, and a point mass in a specified background spacetime are developed here from scratch. The review begins with a discussion of the basic theory of bitensors (Section 2). It then applies the theory to the construction of convenient coordinate systems to chart a neighbourhood of the particle's word line (Section 3). It continues with a thorough discussion of Green's functions in curved spacetime (Section 4). The review concludes with a detailed derivation of each of the three equations of motion (Section 5).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...