Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Med Eng Phys ; 95: 45-50, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34479692

RESUMO

The activPAL linear cadence-metabolic equivalents (METs) equation poorly estimates activity intensity. The magnitude of acceleration in three directional planes may be a superior predictor of activity intensity than stepping cadence, with accelerometry count thresholds developed in children/adolescent populations. We extracted the proprietary accelerometer-derived information to develop a counts-METs model and cross-validates it in laboratory and free-living conditions. Forty adults (25±6 years) wore an activPAL during a 7-stage progressive treadmill protocol (criterion: indirect calorimetry). Tri-axial accelerometry-derived activity counts (vector magnitude) and METs data from a subset of participants (n = 20) were modelled (R2=0.76) and the regression equation evaluated in the remaining participants (n = 20). Thirty-two of these participants wore the activPAL during free-living conditions (n = 192-d; criterion: PiezoRxD monitor). The absolute percent error of the counts-METs model in the laboratory cross-validation was 18±13%, with equivalence testing determinining equivalent MET values to indirect calorimetry during the slowest (1.5 mph) and fastest (4.0-4.5 mph) stages. In free-living conditions, the model accurately quantified light- and moderate-intensity physical activity but underestimated vigorous-intensity activity (6.5±11.3 vs. 5.5±20.8 mins/day; p < 0.001). We developed and present a data analysis method using the activPAL tri-axial accelerometry counts to improve estimations of physical activity intensity in controlled laboratory settings and uncontrolled free-living settings.


Assuntos
Acelerometria , Exercício Físico , Adolescente , Adulto , Calorimetria Indireta , Teste de Esforço , Humanos , Equivalente Metabólico
2.
J Sports Sci ; 39(7): 826-834, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33203323

RESUMO

The activPAL is a valid measure of step counts and posture, but its ability to determine physical activity intensity is unclear. This study tested the criterion validity of the activPAL using its built-in linear cadence-metabolic equivalents (METs) equation (activPAL-linear) versus an individualized height-adjusted curvilinear cadence-METs equation (activPAL-curvilinear) to estimate intensity-related physical activity. Forty adults (25±6 years, 23.3±4.1 kg/m2) wore an activPAL during a 7-stage progressive treadmill walking protocol (criterion: indirect calorimetry). A sub-sample (n=32) wore the device during free-living conditions for 7-days (criterion: PiezoRxD monitor). In the laboratory, the activPAL-linear overestimated METs during slow walking (1.5-3.0 miles•hour-1) but underestimated METs during fast walking (3.5-4.5 miles•hour-1) (all, p<0.001). In the free-living condition, the activPAL-linear overestimated time in light-intensity activity and underestimated moderate-intensity activity (both, p<0.001), but did not register any vigorous-intensity activity. In contrast, the activPAL-curvilinear estimated values statistically equivalent to indirect calorimetry for treadmill stages 1-6 (1.5-4.0 miles•hour-1) and to the PiezoRxD determined light- and moderate-intensity activity during free-living. We present a simple, data processing technique that uses an alternative curvilinear cadence-MET equation that improves the ability of the activPAL to measure intensity-related physical activity in both laboratory and free-living settings.


Assuntos
Algoritmos , Exercício Físico/fisiologia , Equivalente Metabólico/fisiologia , Caminhada/fisiologia , Acelerometria/instrumentação , Atividades Cotidianas , Adulto , Calorimetria Indireta , Teste de Esforço/métodos , Feminino , Humanos , Laboratórios , Masculino , Reprodutibilidade dos Testes , Fatores de Tempo , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...