Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 18018, 2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36289295

RESUMO

Within the petrochemical industry, accurate measurement of microporosity and its distribution within core samples, particularly those from carbonate reservoirs, has garnered intense interest because studies have suggested that following primary and secondary depletion, a majority of the residual and bypassed oil may reside in these porosities. Ideally, the microporosity and its distribution would be determined accurately, quickly, and efficiently. Imaging techniques are commonly used to characterize the porosity and pores but accurate microporosity characterization can be challenging due to resolution and scale limitations. To this end, this study describes the development and verification of a novel method to characterize microporosity in carbonate rocks using terahertz time-domain spectroscopy and exploiting the high signal absorption due to water at these high frequencies. This new method is able to measure microporosity and the results agree well with other bulk measurements and produce microporosity maps which is not possible with many bulk characterization or imaging methods. These microporosity maps show the spatial variation of micropores within a sample and offers insights into the heterogeneity of reservoir materials.

2.
Phys Rev E ; 103(4): L040501, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34005983

RESUMO

Using hydrodynamic simulations, we study the single polymers flowing through model porous media (close-packed colloidal crystal). In good solvent or high flow rates, the polymer transport is similar to gel electrophoresis, with size-dependent sieving for L_{c}/L≲1 and size-independent biased reptation for L_{c}/L≳1 (L_{c} is the polymer contour length and L is the diameter of colloids forming the porous media). Importantly, in bad solvent and low flow rates, the polymers show an extra window of size-dependent velocity for 1≲L_{c}/L≲2, where the polymer transport is controlled by a globule-stretch transition at pore throats, and the transport velocity is much slower than reptation.

3.
Opt Express ; 25(22): 27370-27385, 2017 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-29092211

RESUMO

We use terahertz transmission through limestone sedimentary rock samples to assess the macro and micro porosity. We exploit the notable water absorption in the terahertz spectrum to interact with the pores that are two orders of magnitude smaller (<1µm) than the terahertz wavelength. Terahertz water sensitivity provides us with the dehydration profile of the rock samples. The results show that there is a linear correlation between such a profile and the ratio of micro to macro porosity of the rock. Furthermore, this study estimates the absolute value of total porosity based on optical diffusion theory. We compare our results with that of mercury injection capillary pressure as a benchmark to confirm our analytic framework. The porosimetry method presented here sets a foundation for a new generation of less invasive porosimetry methods with higher penetration depth based on lower frequency (f<10THz) scattering and absorption. The technique has applications in geological studies and in other industries without the need for hazardous mercury or ionizing radiation.

4.
ACS Appl Mater Interfaces ; 9(15): 13111-13120, 2017 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-28291944

RESUMO

Environmental tracing applications require materials that can be detected in complex fluids composed of multiple phases and contaminants. Moreover, large libraries of tracers are necessary in order to mitigate memory effects and to deploy multiple tracers simultaneously in complex oil fields. Herein, we disclose a novel approach based on the thermal decomposition of polymeric nanoparticles comprised of styrenic and methacrylic monomers. Polymeric nanoparticles derived from these monomers cleanly decompose into their constituent monomers at elevated temperatures, thereby maximizing atom economy wherein the entire nanoparticle mass contributes to the generation of detectable units. A total of ten unique single monomer particles and three dual-monomer particles were synthesized using semicontinuous monomer starved addition polymerization. The pyrolysis gas chromatography-flame ionization detection/mass spectrometry (GC-FID/MS) behavior of these particles was studied using high-pressure mass spectrometry. The programmable nature of our methodology permits simultaneous removal of contaminants and subsequent identification and quantification in a single analytical step.

5.
Sci Rep ; 6: 27993, 2016 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-27302076

RESUMO

Current fluorescent nanoparticles-based tracer sensing techniques for oilfield applications suffer from insufficient sensitivity, with the tracer detection limit typically at the several hundred ppm level in untreated oil/water mixtures, which is mainly caused by the interference of the background fluorescence from the organic residues in crude oil under constant external excitation. Here we report the use of a persistent luminescence phenomenon, which enables an external excitation-free and thus background fluorescence-free measurement condition, for ultrahigh-sensitivity crude oil sensing. By using LiGa5O8:Cr(3+) near-infrared persistent luminescent nanoparticles as a tracer nanoagent, we achieved a tracer detection limit at the single-digit ppb level (down to 1 ppb concentration of nanoparticles) in high oil fraction (up to 65 wt.%) oil/water mixtures via a convenient, CCD camera-based imaging technique without any pretreatment or phase separation of the fluid samples. This detection limit is about four to five orders of magnitude lower than that obtained using conventional spectral methods. This study introduces a new type of tracer nanoagents and a new detection method for water tracer sensing in oil reservoir characterization and management.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...