Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem Lett ; 11(12): 4849-4858, 2020 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-32510954

RESUMO

Semicrystalline polymers constitute some of the most widely used materials in the world, and their functional properties are intimately connected to their structure on a range of length scales. Many of these properties depend on the micro- and nanoscale heterogeneous distribution of crystalline and amorphous phases, but this renders the interpretation of ensemble averaged measurements challenging. We use superlocalized widefield single-particle tracking in conjunction with AFM phase imaging to correlate the crystalline morphology of lithium-triflate-doped poly(ethylene oxide) thin films to the motion of individual fluorescent probes at the nanoscale. The results demonstrate that probe motion is intrinsically isotropic in amorphous regions and that, without altering this intrinsic diffusivity, closely spaced, often parallel, crystallite fibers anisotropically constrain probe motion along intercalating amorphous channels. This constraint is emphasized by the agreement between crystallite and anisotropic probe trajectory orientations. This constraint is also emphasized by the extent of the trajectory confinement correlated to the width of the measured gaps between adjacent crystallites. This study illustrates with direct nanoscale correlations how controlled and periodic arrangement of crystalline domains is a promising design principle for mass transport in semicrystalline polymer materials without compromising their mechanical stability.

2.
J Phys Chem B ; 120(18): 4243-8, 2016 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-27077688

RESUMO

Chloride is an essential cofactor in the oxygen-evolution reaction that takes place in photosystem II (PSII). The oxygen-evolving complex (OEC) is oxidized in a linear four-step photocatalytic cycle in which chloride is required for the OEC to advance beyond the S2 state. Here, using density functional theory, we compare the energetics and spin configuration of two different states of the Mn4CaO5 cluster in the S2 state: state A with Mn1(3+) and B with Mn4(3+) with and without chloride. The calculations suggest that model B with an S = 5/2 ground state occurs in the chloride-depleted PSII, which may explain the presence of the EPR signal at g = 4.1. Moreover, we use multiconformer continuum electrostatics to study the effect of chloride depletion on the redox potential associated with the S1/S2 and S2/S3 transitions.


Assuntos
Cloretos/química , Complexos de Coordenação/química , Oxigênio/química , Complexo de Proteína do Fotossistema II/química , Cálcio/química , Espectroscopia de Ressonância de Spin Eletrônica , Ligação de Hidrogênio , Manganês/química , Oxirredução , Complexo de Proteína do Fotossistema II/metabolismo
3.
J Am Chem Soc ; 137(26): 8384-7, 2015 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-26087311

RESUMO

Manganese oxides are a highly promising class of water-oxidation catalysts (WOCs), but the optimal MnOx formulation or polymorph is not clear from previous reports in the literature. A complication not limited to MnOx-based WOCs is that such catalysts are routinely evaluated by different methods, ranging from the use of a chemical oxidant such as Ce(4+), photoactive mediators such as [Ru(bpy)3](2+), or electrochemical techniques. Here, we report a systematic study of nine crystalline MnOx materials as WOCs and show that the identity of the "best" catalyst changes, depending on the oxidation method used to probe the catalytic activity.

4.
Biochemistry ; 54(8): 1663-72, 2015 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-25680072

RESUMO

Efficient proton removal from the oxygen-evolving complex (OEC) of photosystem II (PSII) and activation of substrate water molecules are some of the key aspects optimized in the OEC for high turnover rates. The hydrogen-bonding network around the OEC is critical for efficient proton transfer and for tuning the position and pKa values of the substrate water/hydroxo/oxo molecules. The D1-N181 residue is part of the hydrogen-bonding network on the active face of the OEC. D1-N181 is also associated with the chloride ion in the D2-K317 site and is one of the residues closest to a putative substrate water molecule bound as a terminal ligand to Mn4. We studied the effect of the D1-N181A and D1-N181S mutations on the water oxidation chemistry at the OEC. PSII core complexes isolated from the D1-N181A and D1-N181S mutants have steady-state O2 evolution rates lower than those of wild-type PSII core complexes. Fourier transform infrared spectroscopy indicates slight perturbations of the hydrogen-bonding network in D1-N181A and D1-N181S PSII core complexes, similar to the effects of some other mutations in the same region, but to a lesser extent. Unlike in wild-type PSII core complexes, a g=4 signal was observed in the S2-state EPR spectra of D1-N181A and D1-N181S PSII core complexes in addition to the normal g=2 multiline signal. The S-state cycling of D1-N181A and D1-N181S PSII core complexes was similar to that of wild-type PSII core complexes, whereas the O2-release kinetics of D1-N181A and D1-N181S PSII core complexes were much slower than the O2-release kinetics of wild-type PSII core complexes. On the basis of these results, we conclude that proton transfer is not compromised in the D1-N181A and D1-N181S mutants but that the O-O bond formation step is retarded in these mutants.


Assuntos
Substituição de Aminoácidos , Asparagina/química , Mutação de Sentido Incorreto , Oxigênio/química , Complexo de Proteína do Fotossistema II/química , Synechocystis/enzimologia , Asparagina/genética , Asparagina/metabolismo , Oxigênio/metabolismo , Complexo de Proteína do Fotossistema II/genética , Complexo de Proteína do Fotossistema II/metabolismo , Synechocystis/genética
5.
Nano Lett ; 14(6): 3388-94, 2014 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-24779408

RESUMO

There is considerable interest in the controlled p-type and n-type doping of carbon nanotubes (CNT) for use in a range of important electronics applications, including the development of hybrid CNT/silicon (Si) photovoltaic devices. Here, we demonstrate that easy to handle metallocenes and related complexes can be used to both p-type and n-type dope single-walled carbon nanotube (SWNT) thin films, using a simple spin coating process. We report n-SWNT/p-Si photovoltaic devices that are >450 times more efficient than the best solar cells of this type currently reported and show that the performance of both our n-SWNT/p-Si and p-SWNT/n-Si devices is related to the doping level of the SWNT. Furthermore, we establish that the electronic structure of the metallocene or related molecule can be correlated to the doping level of the SWNT, which may provide the foundation for controlled doping of SWNT thin films in the future.

6.
Phys Chem Chem Phys ; 16(24): 11812-21, 2014 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-24700294

RESUMO

Water oxidation at the oxygen-evolving complex (OEC) of photosystem II (PSII) involves multiple redox states called Sn states (n = 0-4). The S1 → S2 redox transition of the OEC has been studied extensively using various forms of spectroscopy, including electron paramagnetic resonance (EPR) and Fourier transform infrared (FTIR) spectroscopy. In the S2 state, two isomers of the OEC are observed by EPR: a ST = 1/2 form and a ST = 5/2 form. DFT-based structural models of the OEC have been proposed for the two spin isomers in the S2 state, but the factors that determine the stability of one form or the other are not known. Using structural information on the OEC and its surroundings, in conjunction with spectroscopic information available on the S1 → S2 transition for a variety of site-directed mutations, Ca(2+) and Cl(-) substitutions, and small molecule inhibitors, we propose that the hydrogen-bonding network encompassing D1-D61 and the OEC-bound waters plays an important role in stabilizing one spin isomer over the other. In the presence of ammonia, PSII centers can be trapped in either the ST = 5/2 form after a 200 K illumination procedure or an ammonia-altered ST = 1/2 form upon annealing at 273 K. We propose a mechanism for ammonia binding to the OEC in the S2 state that takes into account the hydrogen-binding requirements for ammonia binding and the specificity for binding of ammonia but not methylamine. A discussion regarding the possibility of spin isomers of the OEC in the S1 state, analogous to the spin isomers of the S2 state, is also presented.


Assuntos
Espectroscopia de Ressonância de Spin Eletrônica/métodos , Oxigênio/química , Complexo de Proteína do Fotossistema II/química , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Cristalografia por Raios X , Ligação de Hidrogênio , Mutagênese Sítio-Dirigida , Complexo de Proteína do Fotossistema II/genética , Conformação Proteica
7.
Chemistry ; 20(18): 5327-37, 2014 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-24664616

RESUMO

The reaction of (µ-Cl)2Ni2(NHC)2 (NHC = 1,3-bis(2,6-diisopropylphenyl)-1,3-dihydro-2H-imidazol-2-ylidene (IPr) or 1,3-bis(2,6-diisopropylphenyl)imidazolidin-2-ylidene (SIPr)) with either one equivalent of sodium cyclopentadienyl (NaCp) or lithium indenyl (LiInd) results in the formation of diamagnetic NHC supported Ni(I) dimers of the form (µ-Cp)(µ-Cl)Ni2(NHC)2 (NHC = IPr (1 a) or SIPr (1 b); Cp = C5H5) or (µ-Ind)(µ-Cl)Ni2(NHC)2 (NHC = IPr (2 a) or SIPr (2 b); Ind = C7H9), which contain bridging Cp and indenyl ligands. The corresponding reaction between two equivalents of NaCp or LiInd and (µ-Cl)2Ni2(NHC)2 (NHC = IPr or SIPr) generates unusual 17 valence electron Ni(I) monomers of the form (η(5)-Cp)Ni(NHC) (NHC = IPr (3 a) or SIPr (3 b)) or (η(5)-Ind)Ni(NHC) (NHC = IPr (4 a) or SIPr (4 b)), which have nonlinear geometries. A combination of DFT calculations and NBO analysis suggests that the Ni(I) monomers are more strongly stabilized by the Cp ligand than by the indenyl ligand, which is consistent with experimental results. These calculations also show that the monomers have a lone unpaired-single-electron in their valence shell, which is the reason for the nonlinear structures. At room temperature the Cp bridged dimer (µ-Cp)(µ-Cl)Ni2(NHC)2 undergoes homolytic cleavage of the Ni-Ni bond and is in equilibrium with (η(5)-Cp)Ni(NHC) and (µ-Cl)2Ni2(NHC)2. There is no evidence that this equilibrium occurs for (µ-Ind)(µ-Cl)Ni2(NHC)2. DFT calculations suggest that a thermally accessible triplet state facilitates the homolytic dissociation of the Cp bridged dimers, whereas for bridging indenyl species this excited triplet state is significantly higher in energy. In stoichiometric reactions, the Ni(I) monomers (η(5)-Cp)Ni(NHC) or (η(5)-Ind)Ni(NHC) undergo both oxidative and reductive processes with mild reagents. Furthermore, they are rare examples of active Ni(I) precatalysts for the Suzuki-Miyaura reaction. Complexes 1 a, 2 b, 3 a, 4 a and 4 b have been characterized by X-ray crystallography.

8.
Biochemistry ; 52(44): 7703-6, 2013 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-24125018

RESUMO

The S0 → S1 transition of the oxygen-evolving complex (OEC) of photosystem II is one of the least understood steps in the Kok cycle of water splitting. We introduce a quantum mechanics/molecular mechanics (QM/MM) model of the S0 state that is consistent with extended X-ray absorption fine structure spectroscopy and X-ray diffraction data. In conjunction with the QM/MM model of the S1 state, we address the proton-coupled electron-transfer (PCET) process that occurs during the S0 → S1 transition, where oxidation of a Mn center and deprotonation of a µ-oxo bridge lead to a significant rearrangement in the OEC. A hydrogen bonding network, linking the D1-D61 residue to a Mn-bound water molecule, is proposed to facilitate the PCET mechanism.


Assuntos
Modelos Moleculares , Complexo de Proteína do Fotossistema II/química , Proteínas de Plantas/química , Manganês/química , Oxirredução
9.
Biochemistry ; 52(28): 4758-73, 2013 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-23786373

RESUMO

The role of chloride in photosystem II (PSII) is unclear. Using structural information from PSII and a careful comparison with other chloride-activated enzymes, we proposed a role for chloride at the D2-K317 site in PSII [Pokhrel, R., et al. (2011) Biochemistry 50, 2725-2734]. To probe the role of chloride at this site, the D2-K317R, D2-K317A, D2-K317Q, and D2-K317E mutations were created in the cyanobacterium Synechocystis sp. PCC 6803. Purified PSII from the mutants was probed with Fourier transform infrared difference spectroscopy, demonstrating that compared to PSII from wild-type Synechocystis, PSII from all four mutants exhibit changes in the conformations of the polypeptide backbone and carboxylate groups. However, D2-K317R PSII exhibits minor changes, whereas D2-K317A, D2-K317Q, and D2-K317E PSII exhibit more substantial changes in polypeptide conformations. Steady-state oxygen-evolution measurements of purified PSII core complexes show that the oxygen-evolution activity of D2-K317A is independent of chloride. This is consistent with the loss of the chloride requirement when the charged K residue is replaced with an uncharged residue that no longer binds to an essential carboxylate (D1-D61) in the absence of chloride, analogous to observations in other chloride-activated enzymes. In contrast, the oxygen-evolution activity of D2-K317R is sensitive to the chloride concentration in the assay buffer; the effective KD for chloride binding is higher in D2-K317R than in wild-type PSII, possibly because of a less optimal binding site in the mutant. The S2 states of wild-type, D2-K317A, and D2-K317R PSII were probed using electron paramagnetic resonance spectroscopy. A g = 2 multiline signal, similar to the wild-type signal, was observed for D2-K317A and D2-K317R. However, a g = 4 signal was also observed for D2-K317R. Measurements of flash-dependent O2 yields showed that D2-K317A and D2-K317R have a higher miss factor than wild-type PSII. The oxygen-release kinetics of D2-K317A and D2-K317R were slower than those of the wild type, in the following order: D2-K317A < D2-K317R < wild type. These results collectively suggest that proton transfer is inefficient in D2-K317A and D2-K317R, thereby giving rise to a higher miss factor and slower oxygen-release kinetics.


Assuntos
Cloretos/química , Lisina/química , Complexo de Proteína do Fotossistema II/química , Prótons , Espectroscopia de Ressonância de Spin Eletrônica , Eletroforese em Gel de Poliacrilamida , Transporte de Íons , Mutagênese Sítio-Dirigida , Complexo de Proteína do Fotossistema II/genética , Espectroscopia de Infravermelho com Transformada de Fourier
10.
Biochemistry ; 52(21): 3781-9, 2013 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-23631466

RESUMO

The role of chloride in photosystem II (PSII) is unclear. Several monovalent anions compete for the Cl(-) site(s) in PSII, and some even support activity. NO2(-) has been reported to be an activator in Cl(-)-depleted PSII membranes. In this paper, we report a detailed investigation of the chemistry of NO2(-) with PSII. NO2(-) is shown to inhibit PSII activity, and the effects on the donor side as well as the acceptor side are characterized using steady-state O2-evolution assays, electron paramagnetic resonance (EPR) spectroscopy, electron-transfer assays, and flash-induced polarographic O2 yield measurements. Enzyme kinetics analysis shows multiple sites of NO2(-) inhibition in PSII with significant inhibition of oxygen evolution at <5 mM NO2(-). By EPR spectroscopy, the yield of the S2 state remains unchanged up to 15 mM NO2(-). However, the S2-state g = 4.1 signal is favored over the g = 2 multiline signal with increasing NO2(-) concentrations. This could indicate competition of NO2(-) for the Cl(-) site at higher NO2(-) concentrations. In addition to the donor-side chemistry, there is clear evidence of an acceptor-side effect of NO2(-). The g = 1.9 Fe(II)-QA(-•) signal is replaced by a broad g = 1.6 signal in the presence of NO2(-). Additionally, a g = 1.8 Fe(II)-Q(-•) signal is present in the dark, indicating the formation of a NO2(-)-bound Fe(II)-QB(-•) species in the dark. Electron-transfer assays suggest that the inhibitory effect of NO2(-) on the activity of PSII is largely due to the donor-side chemistry of NO2(-). UV-visible spectroscopy and flash-induced polarographic O2 yield measurements indicate that NO2(-) is oxidized by the oxygen-evolving complex in the higher S states, contributing to the donor-side inhibition by NO2(-).


Assuntos
Nitritos/farmacologia , Complexo de Proteína do Fotossistema II/efeitos dos fármacos , Espectroscopia de Ressonância de Spin Eletrônica , Cinética
11.
Biochemistry ; 50(29): 6312-5, 2011 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-21678923

RESUMO

Chloride binding in photosystem II (PSII) is essential for photosynthetic water oxidation. However, the functional roles of chloride and possible binding sites, during oxygen evolution, remain controversial. This paper examines the functions of chloride based on its binding site revealed in the X-ray crystal structure of PSII at 1.9 Å resolution. We find that chloride depletion induces formation of a salt bridge between D2-K317 and D1-D61 that could suppress the transfer of protons to the lumen.


Assuntos
Cloretos/química , Cloretos/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Ligação de Hidrogênio , Modelos Moleculares , Oxigênio/metabolismo , Prótons , Relação Estrutura-Atividade
12.
Biochemistry ; 50(14): 2725-34, 2011 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-21366335

RESUMO

Chloride-dependent α-amylases, angiotensin-converting enzyme (ACE), and photosystem II (PSII) are activated by bound chloride. Chloride-binding sites in these enzymes contain a positively charged Arg or Lys residue crucial for chloride binding. In α-amylases and ACE, removal of chloride from the binding site triggers formation of a salt bridge between the positively charged Arg or Lys residue involved in chloride binding and a nearby carboxylate residue. The mechanism for chloride activation in ACE and chloride-dependent α-amylases is 2-fold: (i) correctly positioning catalytic residues or other residues involved in stabilizing the enzyme-substrate complex and (ii) fine-tuning of the pKa of a catalytic residue. By using examples of how chloride activates α-amylases and ACE, we can gain insight into the potential mechanisms by which chloride functions in PSII. Recent structural evidence from cyanobacterial PSII indicates that there is at least one chloride-binding site in the vicinity of the oxygen-evolving complex (OEC). Here we propose that, in the absence of chloride, a salt bridge between D2:K317 and D1:D61 (and/or D1:E333) is formed. This can cause a conformational shift of D1:D61 and lower the pKa of this residue, making it an inefficient proton acceptor during the S-state cycle. Movement of the D1:E333 ligand and the adjacent D1:H332 ligand due to chloride removal could also explain the observed change in the magnetic properties of the manganese cluster in the OEC upon chloride depletion.


Assuntos
Cloretos/química , Peptidil Dipeptidase A/química , Estrutura Terciária de Proteína , alfa-Amilases/química , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Sítios de Ligação/genética , Cloretos/metabolismo , Cristalografia por Raios X , Humanos , Modelos Moleculares , Mutação , Peptidil Dipeptidase A/genética , Peptidil Dipeptidase A/metabolismo , Complexo de Proteína do Fotossistema II/química , Complexo de Proteína do Fotossistema II/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Ligação Proteica , alfa-Amilases/genética , alfa-Amilases/metabolismo
13.
Biochemistry ; 48(41): 9848-57, 2009 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-19772300

RESUMO

The Rieske protein from Thermus thermophilus (TtRp) and a truncated version of the protein (truncTtRp), produced to achieve a low-pH crystallization condition, have been characterized using UV-visible and circular dichroism spectroscopies. TtRp and truncTtRp undergo a change in the UV-visible spectra with increasing pH. The LMCT band at 458 nm shifts to 436 nm and increases in intensity. The increase at 436 nm versus pH can be fit using the sum of two Henderson-Hasselbalch equations, yielding two pK(a) values for the oxidized protein. For TtRp, pK(ox1) = 7.48 +/- 0.12 and pK(ox2) = 10.07 +/- 0.17. For truncTtRp, pK(ox1) = 7.87 +/- 0.17 and pK(ox2) = 9.84 +/- 0.42. The shift to shorter wavelength and the increase in intensity for the LMCT band with increasing pH are consistent with deprotonation of the histidine ligands. A pH titration of truncTtRp monitored by circular dichroism also showed pH-dependent changes at 315 and 340 nm. At 340 nm, the fit gives pK(ox1) = 7.14 +/- 0.26 and pK(ox2) = 9.32 +/- 0.36. The change at 315 nm is best fit for a single deprotonation event, giving pK(ox1) = 7.82 +/- 0.10. The lower wavelength region of the CD spectra was unaffected by pH, indicating that the overall fold of the protein remains unchanged, which is consistent with crystallographic results of truncTtRp. The structure of truncTtRp crystallized at pH 6.2 is very similar to TtRp at pH 8.5 and contains only subtle changes localized at the [2Fe-2S] cluster. These titration and structural results further elucidate the histidine ligand characteristics and are consistent with important roles for these amino acids.


Assuntos
Proteínas de Bactérias/química , Complexo III da Cadeia de Transporte de Elétrons/química , Concentração de Íons de Hidrogênio , Thermus thermophilus/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Dicroísmo Circular , Cristalografia por Raios X , Transporte de Elétrons , Complexo III da Cadeia de Transporte de Elétrons/genética , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Cinética , Modelos Moleculares , Conformação Proteica , Espectrofotometria , Thermus thermophilus/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...