Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 10(12)2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34961033

RESUMO

Dioscorea alata (L.), also referred to as water, winged, or greater yam, is one of the most economically important staple food crops in tropical and subtropical areas. In Côte d'Ivoire, it represents, along with other yam species, the largest food crop and significantly contributes to food security. However, studies focusing on better understanding the structure and extent of genetic diversity among D. alata accessions, using molecular and phenotypic traits, are limited. This study was, therefore, conducted to assess the pattern of genetic variability in a set of 188 D. alata accessions from the National Agronomic Research Centre (CNRA) genebank using 11,722 SNP markers (generated by the Diversity Arrays Technology) and nine agronomic traits. Phylogenetic analyses using hierarchical clustering, admixture, kinship, and Discriminant analysis of principal component (DAPC) all assigned the accessions into four main clusters. Genetic diversity assessment using molecular-based SNP markers showed a high proportion of polymorphic SNPs (87.81%). The analysis of molecular variance (AMOVA) showed low molecular variability within genetic groups. In addition, the agronomic traits evaluated for two years in field conditions showed a high heritability and high variability among D. alata accessions. This study provides insights into the genetic diversity among accessions in the CNRA genebank and opens an avenue for sustainable resource management and the identification of promising parental clones for water yam breeding programs in Côte d'Ivoire.

2.
Plant Mol Biol ; 99(4-5): 499-516, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30739243

RESUMO

KEY MESSAGE: Key genes potentially involved in cacao disease resistance were identified by transcriptomic analysis of important cacao cultivars. Defense gene polymorphisms were identified which could contribute to pathogen recognition capacity. Cacao suffers significant annual losses to the water mold Phytophthora spp. (Oomycetes). In West Africa, P. megakarya poses a major threat to farmer livelihood and the stability of cocoa production. As part of a long-term goal to define key disease resistance genes in cacao, here we use a transcriptomic analysis of the disease-resistant cacao clone SCA6 and the susceptible clone NA32 to characterize basal differences in gene expression, early responses to infection, and polymorphisms in defense genes. Gene expression measurements by RNA-seq along a time course revealed the strongest transcriptomic response 24 h after inoculation in the resistant genotype. We observed strong regulation of several pathogenesis-related genes, pattern recognition receptors, and resistance genes, which could be critical for the ability of SCA6 to combat infection. These classes of genes also showed differences in basal expression between the two genotypes prior to infection, suggesting that prophylactic expression of defense-associated genes could contribute to SCA6's broad-spectrum disease resistance. Finally, we analyzed polymorphism in a set of defense-associated receptors, identifying coding variants between SCA6 and NA32 which could contribute to unique capacities for pathogen recognition. This work is an important step toward characterizing genetic differences underlying a successful defense response in cacao.


Assuntos
Cacau/genética , Cacau/imunologia , Resistência à Doença/genética , Resistência à Doença/imunologia , Genótipo , Phytophthora/patogenicidade , Polimorfismo Genético , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Doenças das Plantas/parasitologia , Folhas de Planta , RNA de Plantas/isolamento & purificação , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...