Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochim Biophys Acta Rev Cancer ; 1879(4): 189122, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38796027

RESUMO

Cancer cells are addicted to L-methionine (L-Met) and have a much greater requirement for L-Met than normal cells due to excess transmethylation, termed the Hoffman effect. By targeting this vulnerability through dietary restriction of L-Met, researchers have been able to achieve promising results in inhibiting tumor growth and eradicating cancer cells. Methioninase (EC 4.4.1.11; METase) catalyzes the transformation of L-Met into α-ketobutyrate, ammonia, and methanethiol. The use of METase was initially limited due to its poor stability in vivo, high immunogenicity, and enzyme-induced inactivating antibodies. These issues could be partially resolved by PEGylation, encapsulation in erythrocytes, and various site-directed mutagenesis. The big breakthrough came when it was discovered that METase is effectively administered orally. The enzyme L-asparaginase is approved by the FDA for treatment of acute lymphoblastic leukemia. METase has more potential as a therapeutic since addiction to L-Met is a general and fundamental hallmark of cancer.


Assuntos
Liases de Carbono-Enxofre , Neoplasias , Liases de Carbono-Enxofre/uso terapêutico , Liases de Carbono-Enxofre/metabolismo , Liases de Carbono-Enxofre/farmacologia , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/enzimologia , Metionina/metabolismo , Animais , Antineoplásicos/uso terapêutico , Antineoplásicos/farmacologia
2.
Heliyon ; 10(10): e30962, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38803942

RESUMO

The application of nanomedicine in the treatment of acute lung injury (ALI) has great potential for the development of new therapeutic strategies. To gain insight into the kinetics of nanocarrier distribution upon time-dependent changes in tissue permeability after ALI induction in mice, we developed a physiologically based pharmacokinetic model for albumin nanoparticles (ANP). The model was calibrated using data from mice treated with intraperitoneal LPS (6 mg/kg), followed by intravenous ANP (0.5 mg/mouse or about 20.8 mg/kg) at 0.5, 6, and 24 h. The simulation results reproduced the experimental observations and indicated that the accumulation of ANP in the lungs increased, reaching a peak 6 h after LPS injury, whereas it decreased in the liver, kidney, and spleen. The model predicted that LPS caused an immediate (within the first 30 min) dramatic increase in lung and kidney tissue permeability, whereas splenic tissue permeability gradually increased over 24 h after LPS injection. This information can be used to design new therapies targeting specific organs affected by bacterial infections and potentially by other inflammatory insults.

3.
Pharmaceutics ; 16(5)2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38794330

RESUMO

Biological nanoparticles (NPs), such as extracellular vesicles (EVs), exosome-mimetic nanovesicles (EMNVs) and nanoghosts (NGs), are perspective non-viral delivery vehicles for all types of therapeutic cargo. Biological NPs are renowned for their exceptional biocompatibility and safety, alongside their ease of functionalization, but a significant challenge arises when attempting to load therapeutic payloads, such as nucleic acids (NAs). One effective strategy involves fusing biological NPs with liposomes loaded with NAs, resulting in hybrid carriers that offer the benefits of both biological NPs and the capacity for high cargo loads. Despite their unique parameters, one of the major issues of virtually any nanoformulation is the ability to escape degradation in the compartment of endosomes and lysosomes which determines the overall efficiency of nanotherapeutics. In this study, we fabricated all major types of biological and hybrid NPs and studied their response to the acidic environment observed in the endolysosomal compartment. In this study, we show that EMNVs display increased protonation and swelling relative to EVs and NGs in an acidic environment. Furthermore, the hybrid NPs exhibit an even greater response compared to EMNVs. Short-term incubation of EMNVs in acidic pH corresponding to late endosomes and lysosomes again induces protonation and swelling, whereas hybrid NPs are ruptured, resulting in the decline in their quantities. Our findings demonstrate that in an acidic environment, there is enhanced rupture and release of vesicular cargo observed in hybrid EMNVs that are fused with liposomes compared to EMNVs alone. This was confirmed through PAGE electrophoresis analysis of mCherry protein loaded into nanoparticles. In vitro analysis of NPs colocalization with lysosomes in HepG2 cells demonstrated that EMNVs mostly avoid the endolysosomal compartment, whereas hybrid NPs escape it over time. To conclude, (1) hybrid biological NPs fused with liposomes appear more efficient in the endolysosomal escape via the mechanism of proton sponge-associated scavenging of protons by NPs, influx of counterions and water, and rupture of endo/lysosomes, but (2) EMNVs are much more efficient than hybrid NPs in actually avoiding the endolysosomal compartment in human cells. These results reveal biochemical differences across four major types of biological and hybrid NPs and indicate that EMNVs are more efficient in escaping or avoiding the endolysosomal compartment.

4.
Arch Pharm (Weinheim) ; : e2400086, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38807029

RESUMO

A series of benzoxazole-based amides and sulfonamides were synthesized and evaluated for their human peroxisome proliferator-activated receptor (PPAR)α and PPARγ activity. All tested compounds showed a dual antagonist profile on both PPAR subtypes; based on transactivation results, seven compounds were selected to test their in vitro antiproliferative activity in a panel of eight cancer cell lines with different expression rates of PPARα and PPARγ. 3f was identified as the most cytotoxic compound, with higher potency in the colorectal cancer cell lines HT-29 and HCT116. Compound 3f induced a concentration-dependent activation of caspases and cell-cycle arrest in both colorectal cancer models. Docking experiments were also performed to shed light on the putative binding mode of this novel class of dual PPARα/γ antagonists.

5.
Viruses ; 16(4)2024 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-38675942

RESUMO

The epitranscriptomic modification m6A is a prevalent RNA modification that plays a crucial role in the regulation of various aspects of RNA metabolism. It has been found to be involved in a wide range of physiological processes and disease states. Of particular interest is the role of m6A machinery and modifications in viral infections, serving as an evolutionary marker for distinguishing between self and non-self entities. In this review article, we present a comprehensive overview of the epitranscriptomic modification m6A and its implications for the interplay between viruses and their host, focusing on immune responses and viral replication. We outline future research directions that highlight the role of m6A in viral nucleic acid recognition, initiation of antiviral immune responses, and modulation of antiviral signaling pathways. Additionally, we discuss the potential of m6A as a prognostic biomarker and a target for therapeutic interventions in viral infections.


Assuntos
Imunidade Inata , Viroses , Humanos , Viroses/imunologia , Viroses/virologia , Metilação , Replicação Viral , Vírus/imunologia , Vírus/genética , Animais , RNA Viral/genética , RNA Viral/imunologia , Transdução de Sinais , Interações Hospedeiro-Patógeno/imunologia
6.
Biomed Rep ; 20(3): 37, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38343660

RESUMO

Proteasome inhibitor bortezomib is an anticancer agent approved for treatment of multiple myeloma and mantle cell lymphoma. However, its application in other types of cancer, primarily in solid tumors, is limited due to poor pharmacokinetics, inefficient tissue penetration, low stability and frequent adverse effects. In the present study, a novel micellar nano-scaled delivery system was manufactured, composed of amphiphilic poly(N-vinylpyrrolidone) nanoparticles loaded with bortezomib. Similar nanoparticles loaded with prothionamide, a drug without anticancer effect, were used as control. The size and zeta potential of the obtained polymeric micelles were measured by dynamic light scattering. Bortezomib-loaded micelles exhibited significant cytotoxic activity in vitro in monolayer tumor cell cultures (IC50 ~6.5 µg/ml) and in 3D multicellular tumor spheroids (IC50 ~8.5 µg/ml) of human glioblastoma cell lines U87 and T98G. Additionally, the toxic effects in vivo were studied in zebrafish Danio rerio embryos, with an estimated 50% lethal concentration of 0.1 mg/ml. Considering that bortezomib and other molecules from the class of proteasome inhibitors are potent antitumor agents, nanodelivery approach can help reduce adverse effects and expand the range of its applications for treatment of various oncological diseases.

7.
ACS Pharmacol Transl Sci ; 7(2): 384-394, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38357282

RESUMO

Focusing on the molecular docking results, a series of 3,4-diarylisoxazoles, analogues of Combretastatin A4, bearing various substituents at the fifth position of the isoxazole ring and pharmacophore groups bioisosteric to methoxy substituent at ring B, were synthesized in good yields and high regioselectivity. Depending on the substituent at C5, three approaches were chosen for the construction of isoxazole ring, including nitrosation of gem-dihalocyclopropanes, nitrile oxide synthesis, and difluoromethoxylation of isoxazolone to afford 5-haloisoxazoles, 5-unsubstituted isoxazoles, and 5-difluoromethoxyisoxazoles, respectively. Isoxazoles 43 and 45 showed selective cytotoxicity and antitubulin inhibition properties in vitro, with pharmacodynamic profiles closely related to that of CA-4. Both of them slow down tumor growth (66-74%) in mouse xenografts and slightly exceed in effectiveness Combretastatin A4-phosphate itself.

8.
Biomedicines ; 11(9)2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37761005

RESUMO

Human epidermal growth factor receptor 2 (HER2) is overexpressed in numerous cancer cell types. Therapeutic antibodies and chimeric antigen receptors (CARs) against HER2 were developed to treat human tumors. The major limitation of anti-HER2 CAR-T lymphocyte therapy is attributable to the low HER2 expression in a wide range of normal tissues. Thus, side effects are caused by CAR lymphocyte "on-target off-tumor" reactions. We aimed to develop safer HER2-targeting CAR-based therapy. CAR constructs against HER2 tumor-associated antigen (TAA) for transient expression were delivered into target T and natural killer (NK) cells by an effective and safe non-viral transfection method via nucleofection, excluding the risk of mutations associated with viral transduction. Different in vitro end-point and real-time assays of the CAR lymphocyte antitumor cytotoxicity and in vivo human HER2-positive tumor xenograft mice model proved potent cytotoxic activity of the generated CAR-T-NK cells. Our data suggest transient expression of anti-HER2 CARs in plasmid vectors by human lymphocytes as a safer treatment for HER2-positive human cancers. We also conducted preliminary investigations to elucidate if fucosylated chondroitin sulfate may be used as a possible agent to decrease excessive cytokine production without negative impact on the CAR lymphocyte antitumor effect.

9.
Biochemistry (Mosc) ; 88(7): 847-866, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37751859

RESUMO

Sphingolipids are a diverse family of complex lipids typically composed of a sphingoid base bound to a fatty acid via amide bond. The metabolism of sphingolipids has long remained out of focus of biochemical studies. Recently, it has been attracting an increasing interest of researchers because of different and often multidirectional effects demonstrated by sphingolipids with a similar chemical structure. Sphingosine, ceramides (N-acylsphingosines), and their phosphorylated derivatives (sphingosine-1-phosphate and ceramide-1-phosphates) act as signaling molecules. Ceramides induce apoptosis and regulate stability of cell membranes and cell response to stress. Ceramides and sphingoid bases slow down anabolic and accelerate catabolic reactions, thus suppressing cell proliferation. On the contrary, their phosphorylated derivatives (ceramide-1-phosphate and sphingosine-1-phosphate) stimulate cell proliferation. Involvement of sphingolipids in the regulation of apoptosis and cell proliferation makes them critically important in tumor progression. Sphingolipid metabolism enzymes and sphingolipid receptors can be potential targets for antitumor therapy. This review describes the main pathways of sphingolipid metabolism in human cells, with special emphasis on the properties of this metabolism in tumor cells.

10.
Biochemistry (Mosc) ; 88(7): 944-952, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37751865

RESUMO

All types of cancer cells are addicted to methionine, which is known as the Hoffman effect. Restricting methionine inhibits the growth and proliferation of all tested types of cancer cells, leaving normal cells unaffected. Targeting methionine addiction with methioninase (METase), either alone or in combination with common cancer chemotherapy drugs, has been shown as an effective and safe therapy in various types of cancer cells and animal cancer models. About six years ago, recombinant METase (rMETase) was found to be able to be taken orally as a supplement, resulting in anecdotal positive results in patients with advanced cancer. Currently, there are 8 published clinical studies on METase, including two from the 1990s and six more recent ones. This review focuses on the results of clinical studies on METase-mediated methionine restriction, in particular, on the dosage of oral rMETase taken alone as a supplement or in combination with common chemotherapeutic agents in patients with advanced cancer.

11.
Int J Mol Sci ; 24(13)2023 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-37445751

RESUMO

Frontiers in theranostics are driving the demand for multifunctional nanoagents. Upconversion nanoparticle (UCNP)-based systems activated by near-infrared (NIR) light deeply penetrating biotissue are a powerful tool for the simultaneous diagnosis and therapy of cancer. The intercalation into large polymer micelles of poly(maleic anhydride-alt-1-octadecene) provided the creation of biocompatible UCNPs. The intrinsic properties of UCNPs (core@shell structure NaYF4:Yb3+/Tm3+@NaYF4) embedded in micelles delivered NIR-to-NIR visualization, photothermal therapy, and high drug capacity. Further surface modification of micelles with a thermosensitive polymer (poly-N-vinylcaprolactam) exhibiting a conformation transition provided gradual drug (doxorubicin) release. In addition, the decoration of UCNP micelles with Ag nanoparticles (Ag NPs) synthesized in situ by silver ion reduction enhanced the cytotoxicity of micelles at cell growth temperature. Cell viability assessment on Sk-Br-3, MDA-MB-231, and WI-26 cell lines confirmed this effect. The efficiency of the prepared UCNP complex was evaluated in vivo by Sk-Br-3 xenograft regression in mice for 25 days after peritumoral injection and photoactivation of the lesions with NIR light. The designed polymer micelles hold promise as a photoactivated theranostic agent with quattro-functionalities (NIR absorption, photothermal effect, Ag NP cytotoxicity, and Dox loading) that provides imaging along with chemo- and photothermal therapy enhanced with Ag NPs.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Neoplasias , Humanos , Animais , Camundongos , Micelas , Terapia Fototérmica , Prata , Nanopartículas/química , Polímeros/química , Doxorrubicina/química , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Linhagem Celular Tumoral
12.
Molecules ; 28(10)2023 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-37241899

RESUMO

Bleomycin, which is widely used as an antitumor agent, possesses serious adverse effects such as pulmonary toxicity. Local nanoaerosol deposition for lung cancer treatment is a promising alternative to drug delivery to lung lesions. The aim of this work is to test the hypothesis that bleomycin nanoaerosol can be effectively used to treat multiple lung metastases. To obtain bleomycin nanoaerosol, an aerosol generator based on electrospray of a solution of a nonvolatile substance with gas-phase neutralization of charged aerosol particles was used. Lung metastases in murine Lewis lung carcinoma and B16 melanoma animal models were counted. The effect of inhaled bleomycin nanoparticles on the number and volume of metastases, as well as pulmonary side effects, was investigated. Using a mouse exposure chamber, the dose-dependent effect of inhaled bleomycin on tumor volume was evaluated in comparison with intraperitoneal administration. Bleomycin nanoaerosol reduced the volume of metastases and produced a higher antitumor effect at much lower doses. It has been established that long-term exposure to nanoaerosol with a low dose of bleomycin is capable of suppressing cancer cell growth. The treatment was well tolerated. In the lungs, minor changes were found in the form of focal-diffuse infiltration of the lung parenchyma.


Assuntos
Carcinoma , Neoplasias Pulmonares , Animais , Camundongos , Bleomicina/toxicidade , Aerossóis e Gotículas Respiratórios , Pulmão , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Carcinoma/patologia
13.
Biotechnol Adv ; 64: 108122, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36813011

RESUMO

Extracellular vesicles (EVs) are cell-derived biological nanoparticles that gained great interest for drug delivery. EVs have numerous advantages compared to synthetic nanoparticles, such as ideal biocompatibility, safety, ability to cross biological barriers and surface modification via genetic or chemical methods. On the other hand, the translation and the study of these carriers resulted difficult, mostly because of significant issues in up-scaling, synthesis and impractical methods of quality control. However, current manufacturing advances enable EV packaging with any therapeutic cargo, including DNA, RNA (for RNA vaccines and RNA therapeutics), proteins, peptides, RNA-protein complexes (including gene-editing complexes) and small molecules drugs. To date, an array of new and upgraded technologies have been introduced, substantially improving EV production, isolation, characterization and standardization. The used-to-be "gold standards" of EV manufacturing are now outdated, and the state-of-art requires extensive revision. This review re-evaluates the pipeline for EV industrial production and provides a critical overview of the modern technologies required for their synthesis and characterization.


Assuntos
Vesículas Extracelulares , Nanopartículas , Vesículas Extracelulares/metabolismo , Sistemas de Liberação de Medicamentos , RNA , Preparações Farmacêuticas/metabolismo
14.
Int J Mol Sci ; 25(1)2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38203188

RESUMO

Approximately 1,3-Dipolar cycloaddition of imidazolidine derivatives containing exocyclic double bonds is a convenient method of creating spiro-conjugated molecules with promising anticancer activity. In this work, the derivatives of parabanic acid (2-thioxoimidazolidine-4,5-diones and 5-aryliminoimidazolidine-2,4-diones) were first investigated as dipolarophiles in the reactions with nitrile imines. The generation of nitrile imines was carried out either by the addition of tertiary amine to hydrazonoyl chlorides «drop by drop¼ or using the recently proposed diffusion mixing technique, which led to ~5-15% increases in target compound yields. It was found that the addition of nitrile imines to C=S or C=N exocyclic double bonds led to 1,2,4-thiazolines or triazolines and occurred regioselectively in accordance with the ratio of FMO coefficients of reactants. The yield of the resulting spiro-compound depended on the presence of alkyl substituents in the nitrile imine structure and was significantly decreased in reactions with imines with strong electron donor or electron-withdrawing groups. Some of the obtained compounds showed reasonable in vitro cytotoxicity. IC50 values were calculated for HCT116 (colon cancer) cells using the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) test.


Assuntos
Hidantoínas , Reação de Cicloadição , Iminas , Nitrilas
15.
Pharmaceutics ; 16(1)2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38276486

RESUMO

Curcumin attracts huge attention because of its biological properties: it is antiproliferative, antioxidant, anti-inflammatory, immunomodulatory and so on. However, its usage has been limited by poor water solubility and low bioavailability. Herein, to solve these problems, we developed curcumin-loaded nanoparticles based on end-capped amphiphilic poly(N-vinylpyrrolidone). Nanoparticles were obtained using the solvent evaporation method and were characterized by dynamic and electrophoretic light scattering, transmission electron (TEM) and atomic force (AFM) microscopy. The average particle size was 200 nm, and the ζ-potential was -4 mV. Curcumin-release studies showed that nanoparticles are stable in aqueous solutions. An in vitro release study showed prolonged action in gastric, intestinal and colonic fluids, consistently, and in PBS. In vitro studies on epidermoid carcinoma and human embryonic kidney cells showed that the cells absorbed more curcumin in nanoparticles compared to free curcumin. Nanoparticles are safe for healthy cells and show high cytotoxicity for glioblastoma cells in cytotoxicity studies in vitro. The median lethal dose was determined in an acute toxicity assay on zebrafish and was 23 µM. Overall, the curcumin-loaded nanoparticles seem promising for cancer treatment.

16.
Molecules ; 27(24)2022 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-36557929

RESUMO

Prostate cancer is the second most common type of cancer among men. The main method of its treatment is androgen deprivation therapy, which has a wide range of side effects. One of the solutions to this challenge is the targeted delivery of drugs to prostate cancer cells. In this study, we performed the synthesis of a novel small-molecule PSMA-targeted conjugate based on abiraterone. Cytotoxicity, the induction of intracellular reactive oxygen species, and P450-cytochrome species inhibition were investigated for this conjugate PSMA-abiraterone. The conjugate demonstrated a preferential effect on prostate tumor cells, remaining inactive at up to 100 µM in human fibroblast cells. In addition, it revealed preferential efficacy, specifically on PSMA-expressing lines with a 65% tumor growth inhibition level on 22Rv1 (PSMA+) xenografts after 14-fold oral administration of PSMA-Abi at a single dose of 500 mg/kg (7.0 g/kg total dose) was observed. This compound showed significantly reduced acute toxicity with comparable efficacy compared to AbiAc.


Assuntos
Neoplasias da Próstata , Masculino , Humanos , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/patologia , Próstata/patologia , Antagonistas de Androgênios , Antígenos de Superfície , Androstenos/farmacologia
17.
Pharmaceutics ; 14(12)2022 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-36559265

RESUMO

Magnetic nanosystems (MNSs) consisting of magnetic iron oxide nanoparticles (IONPs) coated by human serum albumin (HSA), commonly used as a component of hybrid nanosystems for theranostics, were engineered and characterized. The HSA coating was obtained by means of adsorption and free radical modification of the protein molecules on the surface of IONPs exhibiting peroxidase-like activity. The generation of hydroxyl radicals in the reaction of IONPs with hydrogen peroxide was proven by the spin trap technique. The methods of dynamic light scattering (DLS) and electron magnetic resonance (EMR) were applied to confirm the stability of the coatings formed on the surface of the IONPs. The synthesized MNSs (d ~35 nm by DLS) were intraarterially administered in tumors implanted to rats in the dose range from 20 to 60 µg per animal and studied in vivo as a contrasting agent for computed tomography. The long-term (within 14 days of the experiment) presence of the MNSs in the tumor vascular bed was detected without immediate or delayed adverse reactions and significant systemic toxic effects during the observation period. The peroxidase-like activity of MNSs was proven by the colorimetric test with o-phenylenediamine (OPD) as a substrate. The potential of the synthesized MNSs to be used for theranostics, particularly, in oncology, was discussed.

18.
Front Med (Lausanne) ; 9: 1035356, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36405587

RESUMO

Amino acid deprivation therapy (AADT) is a promising strategy for developing novel anticancer treatments, based on variations in metabolism of healthy and malignant cells. L-asparaginase was the first amino acid-degrading enzyme that received FDA approval for the treatment of acute lymphoblastic leukemia (ALL). Arginase and arginine deiminase were effective in clinical trials for the treatment of metastatic melanomas and hepatocellular carcinomas. Essential dependence of certain cancer cells on methionine explains the anticancer efficacy of methionine-g-lyase. Along with significant progress in identification of metabolic vulnerabilities of cancer cells, new amino acid-cleaving enzymes appear as promising agents for cancer treatment: lysine oxidase, tyrosine phenol-lyase, cysteinase, and phenylalanine ammonia-lyase. However, sensitivity of specific cancer cell types to these enzymes differs. Hence, search for prognostic and predictive markers for AADT and introduction of the markers into clinical practice are of great importance for translational medicine. As specific metabolic pathways in cancer cells are determined by the enzyme expression, some of these enzymes may define the sensitivity to AADT. This review considers the known predictors for efficiency of AADT, emphasizing the importance of knowledge on cancer-specific amino acid significance for such predictions.

19.
Int J Mol Sci ; 23(19)2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-36233347

RESUMO

The purpose of this study was to determine the anticancer effect of dipropyl thiosulfinate produced in situ by the pharmacological pair: (1) conjugated with daidzein C115H methionine γ-lyase (EC 4.4.1.11, C115H MGL-Dz) and (2) the substrate, S-propyl-L-cysteine sulfoxide (propiin) against various solid tumor types in vitro and in vivo. The MTT test was used to calculate IC50 values for HT29, COLO205 and HCT116 (colon cancer); Panc1 and MIA-PaCa2 (pancreatic cancer); and 22Rv1, DU-145 and PC3 (prostate cancer). The most promising effect for colon cancer cells in vitro was observed in HT29 (IC50 = 6.9 µM). The IC50 values for MIA-PaCa2 and Panc1 were 3.4 and 3.8 µM, respectively. Among prostate cancer cells, 22Rv1 was the most sensitive (IC50 = 5.4 µM). In vivo antitumor activity of the pharmacological pair was studied in HT29, SW620, Panc1, MIA-PaCa2 and 22Rv1 subcutaneous xenografts in BALB/c nude mice. The application of C115H MGL-Dz /propiin demonstrated a significant reduction in the tumor volume of Panc1 (TGI 67%; p = 0.004), MIA-PaCa2 (TGI 50%; p = 0.011), HT29 (TGI 51%; p = 0.04) and 22Rv1 (TGI 70%; p = 0.043) xenografts. The results suggest that the combination of C115H MGL-Dz/propiin is able to suppress tumor growth in vitro and in vivo and the use of this pharmacological pair can be considered as a new strategy for the treatment of solid tumors.


Assuntos
Neoplasias do Colo , Neoplasias Pancreáticas , Pró-Fármacos , Neoplasias da Próstata , Animais , Liases de Carbono-Enxofre , Linhagem Celular Tumoral , Cisteína/análogos & derivados , Xenoenxertos , Humanos , Isoflavonas , Masculino , Metionina , Camundongos , Camundongos Nus , Neoplasias da Próstata/tratamento farmacológico , Sulfóxidos
20.
Pharmaceutics ; 14(10)2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36297658

RESUMO

We have previously designed a phospholipid delivery system for chlorin e6 to increase the efficacy of photodynamic therapy involving a second-generation photosensitizer. Further research into the matter led to double modification of the obtained nanoparticles with ligands exhibiting targeting and cell-penetrating effects: an NGR-containing peptide and heptaarginine (R7), respectively. This study investigated the cell death pathway on HT-1080 tumor cells after treatment with the proposed compositions: the chlorin e6 phospholipid composition and the two-peptide chlorin e6 phospholipid composition. It was demonstrated that most of the cells died by apoptosis. Colocalization analysis of chlorin e6 in the phospholipid composition with two peptides showed mitochondria are one of the targets of the photosensitizer. An HT-1080 tumor-bearing mouse model was used to evaluate the biodistribution of the drug in tumor, liver, and kidney tissues after administration of the study compositions in comparison with free chlorin e6. The photosensitizer mostly accumulated in the tumor tissue of mice administered the phospholipid compositions, and accumulation was increased 2-fold with the peptide-containing composition and approximately 1.5-fold with the unenhanced composition, as compared with free chlorin e6. The enhancement of the chlorin e6 phospholipid composition with targeting and cell-penetrating peptides was found to be effective both in vitro and in vivo.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...