Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2603: 19-29, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36370267

RESUMO

Stable isotope labeling by amino acids in cell culture (SILAC) provides a powerful tool to quantify proteins and posttranslational modifications. Here we describe how to apply SILAC for protein identification and quantification in synchronous meiotic cultures induced by inactivation of the Pat1 kinase in the fission yeast Schizosaccharomyces pombe.


Assuntos
Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Schizosaccharomyces/metabolismo , Proteômica , Meiose , Proteínas/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo
2.
Int J Mol Sci ; 23(21)2022 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-36361590

RESUMO

Pre-mRNA splicing plays a fundamental role in securing protein diversity by generating multiple transcript isoforms from a single gene. Recently, it has been shown that specific G-patch domain-containing proteins are critical cofactors involved in the regulation of splicing processes. In this study, using the knock-out strategy, affinity purification and the yeast-two-hybrid assay, we demonstrated that the spliceosome-associated G-patch protein Gpl1 of the fission yeast S. pombe mediates interactions between putative RNA helicase Gih35 (SPAC20H4.09) and WD repeat protein Wdr83, and ensures their binding to the spliceosome. Furthermore, RT-qPCR analysis of the splicing efficiency of deletion mutants indicated that the absence of any of the components of the Gpl1-Gih35-Wdr83 complex leads to defective splicing of fet5 and pwi1, the reference genes whose unspliced isoforms harboring premature stop codons are targeted for degradation by the nonsense-mediated decay (NMD) pathway. Together, our results shed more light on the functional interactome of G-patch protein Gpl1 and revealed that the Gpl1-Gih35-Wdr83 complex plays an important role in the regulation of pre-mRNA splicing in S. pombe.


Assuntos
Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Spliceossomos/genética , Spliceossomos/metabolismo , Precursores de RNA/genética , Splicing de RNA , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo
3.
Int J Mol Sci ; 22(13)2021 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-34209806

RESUMO

Pre-mRNA splicing is a key process in the regulation of gene expression. In the fission yeast Schizosaccharomyces pombe, Nrl1 regulates splicing and expression of several genes and non-coding RNAs, and also suppresses the accumulation of R-loops. Here, we report analysis of interactions between Nrl1 and selected RNA-processing proteins and regulation of Nrl1 function by phosphorylation. Bacterial two-hybrid system (BACTH) assays revealed that the N-terminal region of Nrl1 is important for the interaction with ATP-dependent RNA helicase Mtl1 while the C-terminal region of Nrl1 is important for interactions with spliceosome components Ctr1, Ntr2, and Syf3. Consistent with this result, tandem affinity purification showed that Mtl1, but not Ctr1, Ntr2, or Syf3, co-purifies with the N-terminal region of Nrl1. Interestingly, mass-spectrometry analysis revealed that in addition to previously identified phosphorylation sites, Nrl1 is also phosphorylated on serines 86 and 112, and that Nrl1-TAP co-purifies with Cka1, the catalytic subunit of casein kinase 2. In vitro assay showed that Cka1 can phosphorylate bacterially expressed Nrl1 fragments. An analysis of non-phosphorylatable nrl1 mutants revealed defects in gene expression and splicing consistent with the notion that phosphorylation is an important regulator of Nrl1 function. Taken together, our results provide insights into two mechanisms that are involved in the regulation of the spliceosome-associated factor Nrl1, namely domain-specific interactions between Nrl1 and RNA-processing proteins and post-translational modification of Nrl1 by phosphorylation.


Assuntos
Proteínas de Ligação a RNA/metabolismo , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Schizosaccharomyces pombe/metabolismo , Caseína Quinase II/metabolismo , Fosforilação , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Mapeamento de Interação de Proteínas , Processamento Pós-Transcricional do RNA , Splicing de RNA , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/fisiologia , Spliceossomos/metabolismo , Técnicas do Sistema de Duplo-Híbrido
4.
Sci Rep ; 11(1): 12726, 2021 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-34135414

RESUMO

mtDNA recombination events in yeasts are known, but altered mitochondrial genomes were not completed. Therefore, we analyzed recombined mtDNAs in six Saccharomyces cerevisiae × Saccharomyces paradoxus hybrids in detail. Assembled molecules contain mostly segments with variable length introgressed to other mtDNA. All recombination sites are in the vicinity of the mobile elements, introns in cox1, cob genes and free standing ORF1, ORF4. The transplaced regions involve co-converted proximal exon regions. Thus, these selfish elements are beneficial to the host if the mother molecule is challenged with another molecule for transmission to the progeny. They trigger mtDNA recombination ensuring the transfer of adjacent regions, into the progeny of recombinant molecules. The recombination of the large segments may result in mitotically stable duplication of several genes.


Assuntos
DNA Mitocondrial/genética , Introgressão Genética , Hibridização Genética , Recombinação Genética , Saccharomyces cerevisiae/genética , Saccharomyces/genética , DNA Fúngico/genética , Genes Fúngicos , Genoma Mitocondrial , Íntrons , Fases de Leitura Aberta
5.
Nucleic Acids Res ; 49(4): 1914-1934, 2021 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-33511417

RESUMO

During homologous recombination, Dbl2 protein is required for localisation of Fbh1, an F-box helicase that efficiently dismantles Rad51-DNA filaments. RNA-seq analysis of dbl2Δ transcriptome showed that the dbl2 deletion results in upregulation of more than 500 loci in Schizosaccharomyces pombe. Compared with the loci with no change in expression, the misregulated loci in dbl2Δ are closer to long terminal and long tandem repeats. Furthermore, the misregulated loci overlap with antisense transcripts, retrotransposons, meiotic genes and genes located in subtelomeric regions. A comparison of the expression profiles revealed that Dbl2 represses the same type of genes as the HIRA histone chaperone complex. Although dbl2 deletion does not alleviate centromeric or telomeric silencing, it suppresses the silencing defect at the outer centromere caused by deletion of hip1 and slm9 genes encoding subunits of the HIRA complex. Moreover, our analyses revealed that cells lacking dbl2 show a slight increase of nucleosomes at transcription start sites and increased levels of methylated histone H3 (H3K9me2) at centromeres, subtelomeres, rDNA regions and long terminal repeats. Finally, we show that other proteins involved in homologous recombination, such as Fbh1, Rad51, Mus81 and Rad54, participate in the same gene repression pathway.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Regulação Fúngica da Expressão Gênica , Inativação Gênica , Recombinação Homóloga , Proteínas de Schizosaccharomyces pombe/metabolismo , Proteínas de Schizosaccharomyces pombe/fisiologia , Fatores de Transcrição/metabolismo , Proteínas de Ciclo Celular/antagonistas & inibidores , Centrômero , Código das Histonas , Nucleossomos/metabolismo , Proteínas Repressoras/fisiologia , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/antagonistas & inibidores , Fatores de Transcrição/antagonistas & inibidores
6.
Cell Cycle ; 19(14): 1777-1785, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32594847

RESUMO

Meiosis is the process by which haploid gametes are produced from diploid precursor cells. We used stable isotope labeling by amino acids in cell culture (SILAC) to characterize the meiotic proteome in the fission yeast Schizosaccharomyces pombe. We compared relative levels of proteins extracted from cells harvested around meiosis I with those of meiosis II, and proteins from premeiotic S phase with the interval between meiotic divisions, when S phase is absent. Our proteome datasets revealed peptides corresponding to short open reading frames (sORFs) that have been previously identified by ribosome profiling as new translated regions. We verified expression of selected sORFs by Western blotting and analyzed the phenotype of deletion mutants. Our data provide a resource for studying meiosis that may help understand differences between meiosis I and meiosis II and how S phase is suppressed between the two meiotic divisions.


Assuntos
Meiose , Fases de Leitura Aberta/genética , Proteômica , Schizosaccharomyces/citologia , Schizosaccharomyces/genética , Deleção de Genes , Marcação por Isótopo , Meiose/genética , Fenótipo , Proteoma/metabolismo , Reprodutibilidade dos Testes , Ribossomos/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo
7.
Trends Cell Biol ; 29(8): 608-611, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31085065

RESUMO

Brillouin microscopy can be used to map the mechanical properties of samples in a noncontact and label-free manner, with potential applications in cell biology. Here, we provide an overview of the underlying principles and technology as well as the current challenges and outlook.


Assuntos
Biologia Celular , Microscopia/métodos , Fenômenos Biomecânicos , Humanos
8.
J Cell Sci ; 131(13)2018 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-29898918

RESUMO

The canonical role of cohesin is to mediate sister chromatid cohesion. In addition, cohesin plays important roles in processes such as DNA repair and regulation of gene expression. Mounting evidence suggests that various post-translational modifications, including phosphorylation, acetylation and sumoylation regulate cohesin functions. Our mass spectrometry analysis of cohesin purified from Schizosaccharomyces pombe cells revealed that the cohesin subunit Psm1 is methylated on two evolutionarily conserved lysine residues, K536 and K1200. We found that mutations that prevent methylation of Psm1 K536 and K1200 render sensitivity to DNA-damaging agents and show positive genetic interactions with mutations in genes encoding the Mus81-Eme1 endonuclease. Yeast two-hybrid and co-immunoprecipitation assays showed that there were interactions between subunits of the cohesin and Mus81-Eme1 complexes. We conclude that cohesin is methylated and that mutations that prevent methylation of Psm1 K536 and K1200 show synthetic phenotypes with mutants defective in the homologous recombination DNA repair pathway.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Ligação a DNA/genética , Endonucleases/genética , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Motivos de Aminoácidos , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Proteínas Cromossômicas não Histona/química , Proteínas Cromossômicas não Histona/genética , Dano ao DNA , Reparo do DNA , Proteínas de Ligação a DNA/metabolismo , Endonucleases/metabolismo , Metilação , Mutação , Ligação Proteica , Schizosaccharomyces/química , Schizosaccharomyces/enzimologia , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/química , Coesinas
9.
DNA Res ; 24(6): 571-583, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-28992063

RESUMO

The yeast Saccharomyces are widely used to test ecological and evolutionary hypotheses. A large number of nuclear genomic DNA sequences are available, but mitochondrial genomic data are insufficient. We completed mitochondrial DNA (mtDNA) sequencing from Illumina MiSeq reads for all Saccharomyces species. All are circularly mapped molecules decreasing in size with phylogenetic distance from Saccharomyces cerevisiae but with similar gene content including regulatory and selfish elements like origins of replication, introns, free-standing open reading frames or GC clusters. Their most profound feature is species-specific alteration in gene order. The genetic code slightly differs from well-established yeast mitochondrial code as GUG is used rarely as the translation start and CGA and CGC code for arginine. The multilocus phylogeny, inferred from mtDNA, does not correlate with the trees derived from nuclear genes. mtDNA data demonstrate that Saccharomyces cariocanus should be assigned as a separate species and Saccharomyces bayanus CBS 380T should not be considered as a distinct species due to mtDNA nearly identical to Saccharomyces uvarum mtDNA. Apparently, comparison of mtDNAs should not be neglected in genomic studies as it is an important tool to understand the origin and evolutionary history of some yeast species.


Assuntos
DNA Mitocondrial , Evolução Molecular , Código Genético , Saccharomyces cerevisiae/genética , Análise de Sequência de DNA/métodos , DNA Fúngico , Genoma Mitocondrial , Íntrons , Filogenia , Saccharomyces cerevisiae/classificação
10.
PLoS Genet ; 12(6): e1006102, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27304859

RESUMO

To identify new proteins required for faithful meiotic chromosome segregation, we screened a Schizosaccharomyces pombe deletion mutant library and found that deletion of the dbl2 gene led to missegregation of chromosomes during meiosis. Analyses of both live and fixed cells showed that dbl2Δ mutant cells frequently failed to segregate homologous chromosomes to opposite poles during meiosis I. Removing Rec12 (Spo11 homolog) to eliminate meiotic DNA double-strand breaks (DSBs) suppressed the segregation defect in dbl2Δ cells, indicating that Dbl2 acts after the initiation of meiotic recombination. Analyses of DSBs and Holliday junctions revealed no significant defect in their formation or processing in dbl2Δ mutant cells, although some Rec12-dependent DNA joint molecules persisted late in meiosis. Failure to segregate chromosomes in the absence of Dbl2 correlated with persistent Rad51 foci, and deletion of rad51 or genes encoding Rad51 mediators also suppressed the segregation defect of dbl2Δ. Formation of foci of Fbh1, an F-box helicase that efficiently dismantles Rad51-DNA filaments, was impaired in dbl2Δ cells. Our results suggest that Dbl2 is a novel regulator of Fbh1 and thereby Rad51-dependent DSB repair required for proper meiotic chromosome segregation and viable sex cell formation. The wide conservation of these proteins suggests that our results apply to many species.


Assuntos
Segregação de Cromossomos/genética , DNA Helicases/metabolismo , Reparo do DNA/genética , Rad51 Recombinase/genética , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/genética , Quebras de DNA de Cadeia Dupla , DNA Cruciforme/genética , DNA Fúngico/metabolismo , Endodesoxirribonucleases/genética , Deleção de Genes , Biblioteca Gênica , Resolvases de Junção Holliday/metabolismo , Meiose/genética
11.
PLoS Genet ; 11(5): e1005225, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25993311

RESUMO

Proper meiotic chromosome segregation, essential for sexual reproduction, requires timely formation and removal of sister chromatid cohesion and crossing-over between homologs. Early in meiosis cohesins hold sisters together and also promote formation of DNA double-strand breaks, obligate precursors to crossovers. Later, cohesin cleavage allows chromosome segregation. We show that in fission yeast redundant casein kinase 1 homologs, Hhp1 and Hhp2, previously shown to regulate segregation via phosphorylation of the Rec8 cohesin subunit, are also required for high-level meiotic DNA breakage and recombination. Unexpectedly, these kinases also mediate phosphorylation of a different meiosis-specific cohesin subunit Rec11. This phosphorylation in turn leads to loading of linear element proteins Rec10 and Rec27, related to synaptonemal complex proteins of other species, and thereby promotes DNA breakage and recombination. Our results provide novel insights into the regulation of chromosomal features required for crossing-over and successful reproduction. The mammalian functional homolog of Rec11 (STAG3) is also phosphorylated during meiosis and appears to be required for fertility, indicating wide conservation of the meiotic events reported here.


Assuntos
Caseína Quinase I/metabolismo , Segregação de Cromossomos , Proteínas Quinases/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/genética , Caseína Quinase I/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Quebras de DNA de Cadeia Dupla , DNA Fúngico/genética , Recombinação Homóloga , Meiose , Mutação , Fosforilação , Regiões Promotoras Genéticas , Proteínas Quinases/genética , Proteínas de Schizosaccharomyces pombe/genética , Complexo Sinaptonêmico/metabolismo , Coesinas
12.
Nat Protoc ; 9(1): 223-31, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24385151

RESUMO

Synchronous cultures are often indispensable for studying meiosis. Here we present an optimized protocol for induction of synchronous meiosis in the fission yeast Schizosaccharomyces pombe. Chemical inactivation of an ATP analog-sensitive form of the Pat1 kinase (pat1-as2) by adding the ATP analog 1-NM-PP1 in G1-arrested cells allows the induction of synchronous meiosis at optimal temperature (25°C). Importantly, this protocol eliminates detrimental effects of elevated temperature (34°C), which is required to inactivate the commonly used temperature-sensitive Pat1 kinase mutant (pat1-114). The addition of the mat-Pc gene to a mat1-M strain further improves chromosome segregation and spore viability. Thus, our protocol offers highly synchronous meiosis at optimal temperature, with most characteristics similar to those of wild-type meiosis. The synchronization protocol can be completed in 5 d (not including strain production, which may take as long as 2 or 3 months).


Assuntos
Trifosfato de Adenosina/análogos & derivados , Técnicas de Cultura de Células , Meiose/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/química , Proteínas de Schizosaccharomyces pombe/química , Schizosaccharomyces/citologia , Trifosfato de Adenosina/farmacologia , Proteínas Serina-Treonina Quinases/genética , Proteínas de Schizosaccharomyces pombe/genética , Temperatura
13.
Cell Cycle ; 13(1): 72-7, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24196444

RESUMO

Two successive rounds of chromosome segregation following a single round of DNA replication enable the production of haploid gametes during meiosis. In the fission yeast Schizosaccharomyces pombe, karyogamy is the process where the nuclei from 2 haploid cells fuse to create a diploid nucleus, which then undergoes meiosis to produce 4 haploid spores. By screening a collection of S. pombe deletion strains, we found that the deletion of 2 genes, mal3 and mto1, leads to the production of asci containing up to 8 spores. Here, we show that Mal3, the fission yeast member of the EB1 family of conserved microtubule plus-end tracking proteins, is required for karyogamy, oscillatory nuclear movement, and proper segregation of chromosomes during meiosis. In the absence of Mal3, meiosis frequently initiates before the completion of karyogamy, thus producing up to 8 nuclei in a single ascus. Our results provide new evidence that fission yeast can initiate meiosis prior to completing karyogamy.


Assuntos
Segregação de Cromossomos/genética , Replicação do DNA/genética , Meiose/genética , Proteínas Associadas aos Microtúbulos/genética , Proteínas de Schizosaccharomyces pombe/genética , Núcleo Celular/genética , Microtúbulos/genética , Microtúbulos/metabolismo
14.
Front Genet ; 5: 454, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25628643

RESUMO

Nucleo-mitochondrial interactions, particularly those determining the primary divergence of biological species, can be studied by means of xenomitochondrial cybrids, which are cells where the original mitochondria are substituted by their counterparts from related species. Saccharomyces cerevisiae cybrids are prepared simply by the mating of the ρ(0) strain with impaired karyogamy and germinating spores from other Saccharomyces species and fall into three categories. Cybrids with compatible mitochondrial DNA (mtDNA) from Saccharomyces paradoxus CBS 432 and Saccharomyces cariocanus CBS 7994 are metabolically and genetically similar to cybrids containing mtDNA from various S. cerevisiae. Cybrids with mtDNA from other S. paradoxus strains, S. cariocanus, Saccharomyces kudriavzevii, and Saccharomyces mikatae require a period of adaptation to establish efficient oxidative phosphorylation. They exhibit a temperature-sensitive phenotype, slower growth rate on a non-fermentable carbon source and a long lag phase after the shift from glucose. Their decreased respiration capacity and reduced cytochrome aa3 content is associated with the inefficient splicing of cox1I3ß, the intron found in all Saccharomyces species but not in S. cerevisiae. The splicing defect is compensated in cybrids by nuclear gain-of-function and can be alternatively suppressed by overexpression of MRP13 gene for mitochondrial ribosomal protein or the MRS2, MRS3, and MRS4 genes involved in intron splicing. S. cerevisiae with Saccharomyces bayanus mtDNA is unable to respire and the growth on ethanol-glycerol can be restored only after mating to some mit (-) strains. The nucleo-mitochondrial compatibility limit of S. cerevisiae and other Saccharomyces was set between S. kudriavzevii and S. bayanus at the divergence from S. cerevisiae about 15 MYA. The MRS1-cox1 S. cerevisiae/S. paradoxus cytonuclear Dobzhansky-Muller pair has a neglible impact on the separation of species since its imperfection is compensated for by gain-of-function mutation.

15.
Antonie Van Leeuwenhoek ; 104(1): 111-22, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23670790

RESUMO

We analyzed 192 strains of the pathogenic yeast Candida glabrata from patients, mainly suffering from systemic infection, at Danish hospitals during 1985-1999. Our analysis showed that these strains were closely related but exhibited large karyotype polymorphism. Nine strains contained small chromosomes, which were smaller than 0.5 Mb. Regarding the year, patient and hospital, these C. glabrata strains had independent origin and the analyzed small chromosomes were structurally not related to each other (i.e. they contained different sets of genes). We suggest that at least two mechanisms could participate in their origin: (i) through a segmental duplication which covered the centromeric region, or (ii) by a translocation event moving a larger chromosome arm to another chromosome that leaves the centromere part with the shorter arm. The first type of small chromosomes carrying duplicated genes exhibited mitotic instability, while the second type, which contained the corresponding genes in only one copy in the genome, was mitotically stable. Apparently, in patients C. glabrata chromosomes are frequently reshuffled resulting in new genetic configurations, including appearance of small chromosomes, and some of these resulting "mutant" strains can have increased fitness in a certain patient "environment".


Assuntos
Candida glabrata/ultraestrutura , Cromossomos Fúngicos/ultraestrutura , Antifúngicos/farmacologia , Sequência de Bases , Candida glabrata/efeitos dos fármacos , Candida glabrata/genética , Candida glabrata/isolamento & purificação , Candidíase/microbiologia , Infecção Hospitalar/microbiologia , DNA Fúngico/genética , DNA Ribossômico , Dinamarca , Farmacorresistência Fúngica/genética , Evolução Molecular , Fluconazol/farmacologia , Fungemia/microbiologia , Duplicação Gênica , Genes Fúngicos , Instabilidade Genômica , Haploidia , Humanos , Cariotipagem , Dados de Sequência Molecular , Filogenia , Seleção Genética , Especificidade da Espécie , Translocação Genética
16.
Cell Cycle ; 12(4): 618-24, 2013 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-23370392

RESUMO

The reduction of chromosome number during meiosis is achieved by two successive rounds of chromosome segregation after just single round of DNA replication. To identify novel proteins required for the proper segregation of chromosomes during meiosis, we analyzed the consequences of deleting Schizosaccharomyces pombe genes predicted to encode protein kinases that are not essential for cell viability. We show that Mph1, a member of the Mps1 family of spindle assembly checkpoint kinases, is required to prevent meiosis I homolog non-disjunction. We also provide evidence for a novel function of Spo4, the fission yeast ortholog of Dbf4-dependent Cdc7 kinase, in regulating the length of anaphase II spindles. In the absence of Spo4, abnormally elongated anaphase II spindles frequently overlap and thus destroy the linear order of nuclei in the ascus. Our observation that the spo4Δ mutant phenotype can be partially suppressed by inhibiting Cdc2-as suggests that dysregulation of the activity of this cyclin-dependent kinase may cause abnormal elongation of anaphase II spindles in spo4Δ mutant cells.


Assuntos
Cromossomos Fúngicos/genética , Regulação Fúngica da Expressão Gênica , Meiose/genética , Não Disjunção Genética , Schizosaccharomyces/genética , Proteína Quinase CDC2/antagonistas & inibidores , Proteína Quinase CDC2/genética , Proteína Quinase CDC2/metabolismo , Proteínas de Ciclo Celular/deficiência , Proteínas de Ciclo Celular/genética , Núcleo Celular/genética , Núcleo Celular/metabolismo , Cromossomos Fúngicos/ultraestrutura , Replicação do DNA , Técnicas de Inativação de Genes , Genótipo , Fenótipo , Plasmídeos/genética , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/deficiência , Proteínas Serina-Treonina Quinases/genética , Schizosaccharomyces/metabolismo , Schizosaccharomyces/ultraestrutura , Proteínas de Schizosaccharomyces pombe/antagonistas & inibidores , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo
18.
FEMS Yeast Res ; 12(7): 819-30, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22830625

RESUMO

We determined the complete sequence of 71 355-bp-long mitochondrial genome from Saccharomyces paradoxus entirely by direct sequencing of purified mitochondrial DNA (mtDNA). This mtDNA possesses the same features as its close relative Saccharomyces cerevisiae - A + T content 85.9%, set of genes coding for the three components of cytochrome oxidase, cytochrome b, three subunits of ATPase, both ribosomal subunits, gene for ribosomal protein, rnpB gene, tRNA package (24) and yeast genetic code. Genes are interrupted by nine group I and group II introns, two of which are in positions unknown in S. cerevisiae, but recognized in Saccharomyces pastorianus. The gene products are related to S. cerevisiae, and the identity of amino acid residues varies from 100% for cox2 to 83% for rps3. The remarkable differences from S. cerevisiae are (1) different gene order (translocation of trnF-trnT1-trnV-cox3-trnfM-rnpb-trnP and transposition of trnW-rns), (2) occurrence of two unusual GI introns, (3) eight active ori elements, and (4) reduced number of GC clusters and divergent intergenic spacers. Despite these facts, the sequenced S. paradoxus mtDNA introduced to S. cerevisiae was able to support the respiratory function to the same extent as the original mtDNAs.


Assuntos
DNA Mitocondrial/química , DNA Mitocondrial/genética , Genoma Mitocondrial , Saccharomyces/genética , Genes Fúngicos , Redes e Vias Metabólicas/genética , Proteínas Mitocondriais/genética , Dados de Sequência Molecular , Oxirredução , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...