Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biotechnol Lett ; 46(2): 183-199, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38252364

RESUMO

Microbial pretreatment of lignocellulosic biomass holds significant promise for environmentally friendly biofuel production, offering an alternative to fossil fuels. This study focused on the isolation and characterization of two novel delignifying bacteria, GIET1 and GIET2, to enhance cellulose accessibility by lignin degradation. Molecular characterization confirmed their genetic identities, providing valuable microbial resources for biofuel production. Our results revealed distinct preferences for temperature, pH, and incubation period for the two bacteria. Bacillus haynesii exhibited optimal performance under moderate conditions and shorter incubation period, making it suitable for rice straw and sugarcane bagasse pretreatment. In contrast, Paenibacillus alvei thrived at higher temperatures and slightly alkaline pH, requiring a longer incubation period ideal for corn stalk pretreatment. These strain-specific requirements highlight the importance of tailoring pretreatment conditions to specific feedstocks. Structural, chemical, and morphological analyses demonstrated that microbial pretreatment reduced the amorphous lignin, increasing cellulose crystallinity and accessibility. These findings underscore the potential of microbial pretreatment to enhance biofuel production by modifying the lignocellulosic biomass. Such environmentally friendly bioconversion processes offer sustainable and cleaner energy solutions. Further research to optimize these methods for scalability and broader application is necessary in the pursuit for more efficient and greener biofuel production.


Assuntos
Lignina , Saccharum , Lignina/química , Celulose/química , Biomassa , Biocombustíveis , Hidrólise
2.
Environ Sci Pollut Res Int ; 27(23): 29612-29622, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32440880

RESUMO

The objective of the present research is to study the levels of reactive oxygen species (ROS) and protein carbonyl (PC) and the functional protein levels of metallothioneins (MT) in Penaeus indicus postlarvae (PL) upon sublethal copper exposure and to determine the biomarkers. The PL were exposed to sublethal copper of 0.164 ppm. The experiments were carried out in the laboratory over a period of 30 days with sampling intervals of 24, 48, and 96 h and 10, 20, and 30 days. The present study confirms that high oxidative stress can be induced from 24 h onwards upon sublethal exposure to copper in P. indicus PL. This is evident from the increasing levels of ROS in the exposed PL during both short-term and long-term exposures to sublethal copper. Since variability in metallothionein levels from 24 h through 30 days of experimental period was observed, metallothioneins cannot be regarded as a good biomarker as far as copper toxicity with respect to P. indicus PL is concerned. The effect of copper on protein carbonyl seems to be very rapid and consistent. The results suggest that protein carbonyl in P. indicus PL is significantly induced in a time-dependent manner upon copper exposure even at sublethal dose, and it seems reasonable to support that protein carbonyl could be used as a biomarker to copper toxicity.


Assuntos
Cobre , Penaeidae , Animais , Biomarcadores , Metalotioneína , Estresse Oxidativo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...