Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Brain Inform ; 4(2): 123-134, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28337675

RESUMO

Neuronal morphology is extremely diverse across and within animal species, developmental stages, brain regions, and cell types. This diversity is functionally important because neuronal structure strongly affects synaptic integration, spiking dynamics, and network connectivity. Digital reconstructions of axonal and dendritic arbors are thus essential to quantify and model information processing in the nervous system. NeuroMorpho.Org is an established repository containing tens of thousands of digitally reconstructed neurons shared by several hundred laboratories worldwide. Each neuron is annotated with specific metadata based on the published references and additional details provided by data owners. The number of represented metadata concepts has grown over the years in parallel with the increase of available data. Until now, however, the lack of standardized terminologies and of an adequately structured metadata schema limited the effectiveness of user searches. Here we present a new organization of NeuroMorpho.Org metadata grounded on a set of interconnected hierarchies focusing on the main dimensions of animal species, anatomical regions, and cell types. We have comprehensively mapped each metadata term in NeuroMorpho.Org to this formal ontology, explicitly resolving all ambiguities caused by synonymy and homonymy. Leveraging this consistent framework, we introduce OntoSearch, a powerful functionality that seamlessly enables retrieval of morphological data based on expert knowledge and logical inferences through an intuitive string-based user interface with auto-complete capability. In addition to returning the data directly matching the search criteria, OntoSearch also identifies a pool of possible hits by taking into consideration incomplete metadata annotation.

2.
Nat Methods ; 14(2): 112-116, 2017 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-28139675

RESUMO

Most neuroscientists have yet to embrace a culture of data sharing. Using our decade-long experience at NeuroMorpho.Org as an example, we discuss how publicly available repositories may benefit data producers and end-users alike. We outline practical recipes for resource developers to maximize the research impact of data sharing platforms for both contributors and users.


Assuntos
Disseminação de Informação/métodos , Neurociências , Bases de Dados Factuais , Humanos , Internet , Neurociências/métodos , Neurociências/organização & administração
4.
Front Neuroanat ; 8: 138, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25538569

RESUMO

Neuronal morphology is diverse among animal species, developmental stages, brain regions, and cell types. The geometry of individual neurons also varies substantially even within the same cell class. Moreover, specific histological, imaging, and reconstruction methodologies can differentially affect morphometric measures. The quantitative characterization of neuronal arbors is necessary for in-depth understanding of the structure-function relationship in nervous systems. The large collection of community-contributed digitally reconstructed neurons available at NeuroMorpho.Org constitutes a "big data" research opportunity for neuroscience discovery beyond the approaches typically pursued in single laboratories. To illustrate these potential and related challenges, we present a database-wide statistical analysis of dendritic arbors enabling the quantification of major morphological similarities and differences across broadly adopted metadata categories. Furthermore, we adopt a complementary unsupervised approach based on clustering and dimensionality reduction to identify the main morphological parameters leading to the most statistically informative structural classification. We find that specific combinations of measures related to branching density, overall size, tortuosity, bifurcation angles, arbor flatness, and topological asymmetry can capture anatomically and functionally relevant features of dendritic trees. The reported results only represent a small fraction of the relationships available for data exploration and hypothesis testing enabled by sharing of digital morphological reconstructions.

5.
Front Neuroinform ; 7: 17, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23986695
6.
Neuroinformatics ; 6(3): 241-52, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18949582

RESUMO

Neuronal morphology affects network connectivity, plasticity, and information processing. Uncovering the design principles and functional consequences of dendritic and axonal shape necessitates quantitative analysis and computational modeling of detailed experimental data. Digital reconstructions provide the required neuromorphological descriptions in a parsimonious, comprehensive, and reliable numerical format. NeuroMorpho.Org is the largest web-accessible repository service for digitally reconstructed neurons and one of the integrated resources in the Neuroscience Information Framework (NIF). Here we describe the NeuroMorpho.Org approach as an exemplary experience in designing, creating, populating, and curating a neuroscience digital resource. The simple three-tier architecture of NeuroMorpho.Org (web client, web server, and relational database) encompasses all necessary elements to support a large-scale, integrate-able repository. The data content, while heterogeneous in scientific scope and experimental origin, is unified in format and presentation by an in house standardization protocol. The server application (MRALD) is secure, customizable, and developer-friendly. Centralized processing and expert annotation yields a comprehensive set of metadata that enriches and complements the raw data. The thoroughly tested interface design allows for optimal and effective data search and retrieval. Availability of data in both original and standardized formats ensures compatibility with existing resources and fosters further tool development. Other key functions enable extensive exploration and discovery, including 3D and interactive visualization of branching, frequently measured morphometrics, and reciprocal links to the original PubMed publications. The integration of NeuroMorpho.Org with version-1 of the NIF (NIFv1) provides the opportunity to access morphological data in the context of other relevant resources and diverse subdomains of neuroscience, opening exciting new possibilities in data mining and knowledge discovery. The outcome of such coordination is the rapid and powerful advancement of neuroscience research at both the conceptual and technological level.


Assuntos
Biologia Computacional/métodos , Bases de Dados como Assunto/organização & administração , Neurociências/métodos , Animais , Biologia Computacional/tendências , Bases de Dados como Assunto/tendências , Humanos , Armazenamento e Recuperação da Informação/métodos , Armazenamento e Recuperação da Informação/normas , Armazenamento e Recuperação da Informação/tendências , Internet/organização & administração , Internet/tendências , Metanálise como Assunto , Neuroanatomia/métodos , Neuroanatomia/tendências , Neurônios/citologia , Neurociências/tendências , Software/normas , Software/tendências
7.
Nat Protoc ; 3(5): 866-76, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18451794

RESUMO

L-Measure (LM) is a freely available software tool for the quantitative characterization of neuronal morphology. LM computes a large number of neuroanatomical parameters from 3D digital reconstruction files starting from and combining a set of core metrics. After more than six years of development and use in the neuroscience community, LM enables the execution of commonly adopted analyses as well as of more advanced functions. This report illustrates several LM protocols: (i) extraction of basic morphological parameters, (ii) computation of frequency distributions, (iii) measurements from user-specified subregions of the neuronal arbors, (iv) statistical comparison between two groups of cells and (v) filtered selections and searches from collections of neurons based on any Boolean combination of the available morphometric measures. These functionalities are easily accessed and deployed through a user-friendly graphical interface and typically execute within few minutes on a set of approximately 20 neurons. The tool is available at http://krasnow.gmu.edu/cn3 for either online use on any Java-enabled browser and platform or download for local execution under Windows and Linux.


Assuntos
Bases de Dados Factuais , Internet , Neurônios/citologia , Software , Interface Usuário-Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...