Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochim Biophys Acta Mol Basis Dis ; 1864(12): 3771-3785, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30315929

RESUMO

Amyotrophic lateral sclerosis (ALS) is a fatal motor neuron disease. Mutations in the gene encoding copper/zinc superoxide dismutase-1 (SOD1) are responsible for most familiar cases, but the role of mutant SOD1 protein dysfunction in non-cell autonomous neurodegeneration, especially in relation to microglial activation, is still unclear. Here, we focused our study on microglial cells, which release SOD1 also through exosomes. We observed that in rat primary microglia the overexpression of the most-common SOD1 mutations linked to fALS (G93A and A4V) leads to SOD1 intracellular accumulation, which correlates to autophagy dysfunction and microglial activation. In primary contact co-cultures, fALS mutant SOD1 overexpression by microglial cells appears to be neurotoxic by itself. Treatment with the autophagy-inducer trehalose reduced mutant SOD1 accumulation in microglial cells, decreased microglial activation and abrogated neurotoxicity in the co-culture model. These data suggest that i) the alteration of the autophagic pathway due to mutant SOD1 overexpression is involved in microglial activation and neurotoxicity; ii) the induction of autophagy with trehalose reduces microglial SOD1 accumulation through proteasome degradation and activation, leading to neuroprotection. Our results provide a novel contribution towards better understanding key cellular mechanisms in non-cell autonomous ALS neurodegeneration.


Assuntos
Esclerose Lateral Amiotrófica/genética , Autofagia , Microglia/patologia , Mutação Puntual , Superóxido Dismutase-1/genética , Regulação para Cima , Esclerose Lateral Amiotrófica/tratamento farmacológico , Esclerose Lateral Amiotrófica/patologia , Animais , Autofagia/efeitos dos fármacos , Células Cultivadas , Modelos Animais de Doenças , Microglia/efeitos dos fármacos , Microglia/metabolismo , Fármacos Neuroprotetores/farmacologia , Mutação Puntual/efeitos dos fármacos , Ratos , Ratos Wistar , Trealose/farmacologia , Regulação para Cima/efeitos dos fármacos
2.
Neurochem Int ; 115: 37-49, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29061383

RESUMO

Purine nucleoside phosphorylase (PNP), a crucial enzyme in purine metabolism which converts ribonucleosides into purine bases, has mainly been found inside glial cells. Since we recently demonstrated that PNP is released from rat C6 glioma cells, we then wondered whether this occurs in normal brain cells. Using rat primary cultures of microglia, astrocytes and cerebellar granule neurons, we found that in basal condition all these cells constitutively released a metabolically active PNP with Km values very similar to those measured in C6 glioma cells. However, the enzyme expression/release was greater in microglia or astrocytes that in neurons. Moreover, we exposed primary brain cell cultures to pro-inflammatory agents such as lipopolysaccharide (LPS) or ATP alone or in combination. LPS alone caused an increased interleukin-1ß (IL-1ß) secretion mainly from microglia and no modification in the PNP release, even from neurons in which it enhanced cell death. In contrast, ATP administered alone to glial cells at high micromolar concentrations significantly stimulated the release of PNP within 1 h, an effect not modified by LPS presence, whereas IL-1ß secretion was stimulated by ATP only in cells primed for 2 h with LPS. In both cases ATP effect was mediated by P2X7 receptor (P2X7R), since it was mimicked by cell exposure to Bz-ATP, an agonist of P2X7R, and blocked by cell pre-treatment with the P2X7R antagonist A438079. Interestingly, ATP-induced PNP release from glial cells partly occurred through the secretion of lysosomal vesicles in the extracellular medium. Thus, during inflammatory cerebral events PNP secretion promoted by extracellular ATP accumulation might concur to control extracellular purine signals. Further studies could elucidate whether, in these conditions, a consensual activity of enzymes downstream of PNP in the purine metabolic cascade avoids accumulation of extracellular purine bases that might concur to brain injury by unusual formation of reactive oxygen species.


Assuntos
Astrócitos/metabolismo , Microglia/metabolismo , Purina-Núcleosídeo Fosforilase/metabolismo , Receptores Purinérgicos P2X7/análise , Trifosfato de Adenosina/metabolismo , Animais , Encéfalo/metabolismo , Glioma/tratamento farmacológico , Glioma/metabolismo , Interleucina-1beta/metabolismo , Lipopolissacarídeos/farmacologia , N-Glicosil Hidrolases/metabolismo , Neuroglia/efeitos dos fármacos , Neuroglia/metabolismo , Neurônios/metabolismo
3.
J Neurochem ; 141(2): 208-221, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28251649

RESUMO

Intracellular purine turnover is mainly oriented to preserving the level of triphosphate nucleotides, fundamental molecules in vital cell functions that, when released outside cells, act as receptor signals. Conversely, high levels of purine bases and uric acid are found in the extracellular milieu, even in resting conditions. These compounds could derive from nucleosides/bases that, having escaped to cell reuptake, are metabolized by extracellular enzymes similar to the cytosolic ones. Focusing on purine nucleoside phosphorylase (PNP) that catalyzes the reversible phosphorolysis of purine (deoxy)-nucleosides/bases, we found that it is constitutively released from cultured rat C6 glioma cells into the medium, and has a molecular weight and enzyme activity similar to the cytosolic enzyme. Cell exposure to 10 µM ATP or guanosine triphosphate (GTP) increased the extracellular amount of all corresponding purines without modifying the levels/activity of released PNP, whereas selective activation of ATP P2Y1 or adenosine A2A metabotropic receptors increased PNP release and purine base formation. The reduction to 1% in oxygen supply (2 h) to cells decreased the levels of released PNP, leading to an increased presence of extracellular nucleosides and to a reduced formation of xanthine and uric acid. Conversely, 2 h cell re-oxygenation enhanced the extracellular amounts of both PNP and purine bases. Thus, hypoxia and re-oxygenation modulated in opposite manner the PNP release/activity and, thereby, the extracellular formation of purine metabolism end-products. In conclusion, extracellular PNP and likely other enzymes deputed to purine base metabolism are released from cells, contributing to the purinergic system homeostasis and exhibiting an important pathophysiological role.


Assuntos
Glioma/enzimologia , Purina-Núcleosídeo Fosforilase/metabolismo , Animais , Linhagem Celular Tumoral , Ratos
4.
J Neuropathol Exp Neurol ; 74(8): 818-34, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26185969

RESUMO

Apolipoprotein E (ApoE) is mainly secreted by glial cells and is involved in many brain functions, including neuronal plasticity, ß-amyloid clearance, and neuroprotection. Microglia--the main immune cells of the brain--are one source of ApoE, but little is known about the physiologic regulation of microglial ApoE secretion by neurons and whether this release changes under inflammatory or neurodegenerative conditions. Using rat primary neural cell cultures, we show that microglia release ApoE through a Golgi-mediated secretion pathway and that ApoE progressively accumulates in neuroprotective microglia-conditioned medium. This constitutive ApoE release is negatively affected by microglial activation both with lipopolysaccharide and with ATP. Microglial ApoE release is stimulated by neuron-conditioned media and under coculture conditions. Neuron-stimulated microglial ApoE release is mediated by serine and glutamate through N-methyl-D-aspartate receptors and is differently regulated by activation states (i.e. lipopolysaccharide vs ATP) and by 6-hydroxydopamine. Microglial ApoE silencing abrogated protection of cerebellar granule neurons against 6-hydroxydopamine toxicity in cocultures, indicating that microglial ApoE release is neuroprotective. Our findings shed light on the reciprocal cross-talk between neurons and microglia that is crucial for normal brain functions. They also open the way for the identification of possible pharmacologic targets that can modulate neuroprotective microglial ApoE release under pathologic conditions.


Assuntos
Apolipoproteínas E/metabolismo , Encefalopatias/metabolismo , Microglia/metabolismo , Neurônios/metabolismo , Animais , Células Cultivadas , Cromatografia Líquida de Alta Pressão , Técnicas de Cocultura , Meios de Cultivo Condicionados/farmacologia , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Imuno-Histoquímica , Técnicas In Vitro , RNA Interferente Pequeno , Ratos , Ratos Wistar , Reação em Cadeia da Polimerase em Tempo Real , Transfecção
5.
Eur J Neurosci ; 39(2): 176-85, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24438488

RESUMO

CCAAT enhancer-binding protein ß is a transcription factor that is involved in many brain processes, although its role in neuronal survival/death remains unclear. By using primary cultures of rat cerebellar granule neurons, we have shown here that CCAAT enhancer-binding protein ß is present as all of its isoforms: the transcriptional activators liver activator proteins 1 and 2, and the transcriptional inhibitor liver inhibitory protein. We have also shown that liver activator protein 1 undergoes post-translational modifications, such as phosphorylation and sumoylation. These isoforms have different subcellular localizations, liver activator protein 2 being found in the cytosolic fraction only, liver inhibitory protein in the nucleus only, and liver activator protein 1 in both fractions. Through neuronal apoptosis induction by shifting mature cerebellar granule neurons to low-potassium medium, we have demonstrated that nuclear liver activator protein 1 expression decreases and its phosphorylation disappears, whereas liver inhibitory protein levels increase in the nuclear fraction, suggesting a pro-survival role for liver activator protein transcriptional activation and a pro-apoptotic role for liver inhibitory protein transcriptional inhibition. To confirm this, we transfected cerebellar granule neurons with plasmids expressing liver activator protein 1, liver activator protein 2, or liver inhibitory protein respectively, and observed that both liver activator proteins, which increase CCAAT-dependent transcription, but not liver inhibitory protein, counteracted apoptosis, thus demonstrating the pro-survival role of liver activator proteins. These data significantly improve our current understanding of the role of CCAAT enhancer-binding protein ß in neuronal survival/apoptosis.


Assuntos
Apoptose/fisiologia , Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Cerebelo/fisiologia , Neurônios/fisiologia , Ativação Transcricional , Animais , Western Blotting , Proteína beta Intensificadora de Ligação a CCAAT/química , Proteína beta Intensificadora de Ligação a CCAAT/genética , Linhagem Celular , Sobrevivência Celular/fisiologia , Células Cultivadas , Humanos , Imuno-Histoquímica , Fosforilação , Potássio/metabolismo , Isoformas de Proteínas , Ratos , Ratos Wistar , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Frações Subcelulares/metabolismo , Transfecção
6.
Curr Pharm Des ; 19(28): 5085-92, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23448464

RESUMO

Gene expression is controlled by several epigenetic mechanisms involving post-translational modification of histones (acetylation, phosphorylation and others). These mechanisms in the brain are not only important for normal function but also for the development of pathologies when their derangement does occur. The present review deals with post-translational modifications of histones in two neurodegenerative diseases characterized by different etiology and pathological progression, Huntington's disease and Parkinson's disease. A relatively large body of evidence supports an important role of these mechanisms in Huntington's disease while knowledge of similar mechanisms in Parkinson's disease is at a lower degree of understanding. Starting from available information on pathologies, the present state of possible therapeutic targets is considered and future developments are discussed.


Assuntos
Modelos Animais de Doenças , Histonas/metabolismo , Doença de Huntington/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Doença de Parkinson/metabolismo , Processamento de Proteína Pós-Traducional , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/enzimologia , Encéfalo/metabolismo , Inibidores de Histona Desacetilases/uso terapêutico , Humanos , Doença de Huntington/tratamento farmacológico , Doença de Huntington/enzimologia , Metilação/efeitos dos fármacos , Terapia de Alvo Molecular , Proteínas do Tecido Nervoso/antagonistas & inibidores , Neurônios/efeitos dos fármacos , Neurônios/enzimologia , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/enzimologia , Fosforilação/efeitos dos fármacos , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Ubiquitinação/efeitos dos fármacos
7.
Neurosignals ; 21(1-2): 112-28, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-22572742

RESUMO

Microglial-neuronal interactions are essential for brain physiopathology. In this framework, recent data have changed the concept of microglia from essentially macrophagic cells to crucial elements in maintaining neuronal homeostasis and function through the release of neuroprotective molecules. Using proteomic analysis, here we identify copper-zinc superoxide dismutase (SOD1) as a protein produced and released by cultured rat primary microglia. Evidence for a neuroprotective role of microglia-derived SOD1 resulted from experiments in which primary cerebellar granule neurons (CGNs) were exposed to the dopaminergic toxin 6-hydroxydopamine (6-OHDA). Microglial conditioned medium, in which SOD1 had accumulated, protected CGNs from degeneration, and neuroprotection was abrogated by SOD1 inhibitors. These effects were replicated when exogenous SOD1 was added to a nonconditioned medium. SOD1 neuroprotective action was mediated by increased cell calcium from an external source. Further experiments demonstrated the specificity of SOD1 neuroprotection against 6-OHDA compared to other types of neurotoxic challenges. SOD1, constitutively produced and released by microglia through a lysosomal secretory pathway, is identified here for the first time as an essential component of neuroprotection mediated by microglia. This novel information is relevant to stimulating further studies of microglia-mediated neuroprotection in in vivo models of neurodegenerative diseases.


Assuntos
Microglia/metabolismo , Neurônios/metabolismo , Fármacos Neuroprotetores/metabolismo , Oxidopamina/toxicidade , Superóxido Dismutase/metabolismo , Animais , Animais Recém-Nascidos , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Células Cultivadas , Relação Dose-Resposta a Droga , Microglia/efeitos dos fármacos , Microglia/enzimologia , Neurônios/efeitos dos fármacos , Neurônios/enzimologia , Ratos , Ratos Wistar , Superóxido Dismutase/farmacologia , Superóxido Dismutase-1
8.
Tissue Cell ; 44(2): 122-31, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22325741

RESUMO

The present study shows the localization of epidermal and dermal proteins produced in lizard skin cultivated in vitro. Cells from the skin have been cultured for up to one month to detect the expression of keratins, actin, vimentin and extracellular matrix proteins (fibronectin, chondroitin sulphate proteoglycan, elastin and collagen I). Keratinocytes and dermal cells weakly immunoreact for Pan-Cytokeratin but not with the K17-antibody at the beginning of the cell culture when numerous keratin bundles are present in keratinocyte cytoplasm. The dense keratin network disappears after 7-12 days in culture, and K17 becomes detectable in both keratinocytes and mesenchymal cells isolated from the dermis. While most epidermal cells are lost after 2 weeks of in vitro cultivation dermal cells proliferate and form a pellicle of variable thickness made of 3-8 cell layers. The fibroblasts of this dermal equivalent produces an extracellular matrix containing chondroitin sulphate proteoglycan, collagen I, elastic fibers and fibronectin, explaining the attachment of the pellicle to the substratum. The study indicates that after improving keratinocyte survival a skin equivalent for lizard epidermis would be feasible as a useful tool to analyze the influence of the dermis on the process of epidermal differentiation and the control of the shedding cycle in squamates.


Assuntos
Proteínas da Matriz Extracelular/metabolismo , Imuno-Histoquímica/métodos , Queratinas/metabolismo , Lagartos , Pele/ultraestrutura , Actinas/metabolismo , Animais , Técnicas de Cultura de Células/métodos , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Proteoglicanas de Sulfatos de Condroitina/metabolismo , Colágeno Tipo I/metabolismo , Meios de Cultura , Citoplasma/metabolismo , Epiderme/metabolismo , Epiderme/fisiologia , Fibroblastos/metabolismo , Fibroblastos/ultraestrutura , Fibronectinas/metabolismo , Queratinócitos/metabolismo , Queratinócitos/fisiologia , Queratinócitos/ultraestrutura , Pele/metabolismo , Fatores de Tempo
9.
Curr Neuropharmacol ; 10(4): 303-10, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23730254

RESUMO

Nitric oxide (NO) is a versatile cellular messenger performing a variety of physiologic and pathologic actions in most tissues. It is particularly important in the nervous system, where it is involved in multiple functions, as well as in neuropathology, when produced in excess. Several of these functions are based on interactions between NO produced by neurons and NO produced by glial cells, mainly astrocytes and microglia. The present paper briefly reviews some of these interactions, in particular those involved in metabolic regulation, control of cerebral blood flow, axonogenesis, synaptic function and neurogenesis. Aim of the paper is mainly to underline the physiologic aspects of these interactions rather than the pathologic ones.

10.
Tissue Cell ; 43(6): 350-8, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21872288

RESUMO

An in vitro system of isolated skin cells has been developed in order to address the understanding on the factors that control the shedding cycle and differentiation of lizard epidermis. The skin from the regenerating lizard tail has been separated in epidermis and dermis, cells have been dissociated, cultivated in vitro, and studied ultrastructurally after 1-30 days of culture condition. Dissociated keratinocytes after 12 days in culture show numerous cell elongations and contain bundles of keratin or sparse keratin filaments. These cells often contain one to three 0.5-3 µm large and dense "keratinaceous bodies", an organelle representing tonofilament disassembling. Most keratinocytes have sparse tonofilaments in the cytoplasm and form shorter bundles of keratin in the cell periphery. The dissociated dermis mainly consists of mesenchymal cells containing sparse bundles of intermediate filaments. These cells proliferate and form multi-stratified layers and a dermal pellicle in about 2-3 weeks in vitro in our basic medium. Conversely, cultures of keratinocytes do not expand but eventually reduce to few viable cells within 2-3 weeks of in vitro condition. It is suggested that dermal cells sustain themselves through the production of growth factors but that epidermal cells requires specific growth factors still to be identified before setting-up an in vitro system that allows analyzing the control of the shedding cycle in lizards.


Assuntos
Diferenciação Celular , Células Epidérmicas , Queratinócitos/citologia , Lagartos , Regeneração , Pele/citologia , Animais , Técnicas de Cultura de Células , Epiderme/ultraestrutura , Imuno-Histoquímica , Queratinócitos/ultraestrutura , Queratinas/metabolismo , Pele/ultraestrutura , Cauda/citologia , Cauda/ultraestrutura
11.
Prog Neurobiol ; 92(3): 293-315, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20609379

RESUMO

Microglia are the main immune cells in the brain, playing a role in both physiological and pathological conditions. Microglial involvement in neurodegenerative diseases is well-established, being microglial activation and neuroinflammation common features of these neuropathologies. Microglial activation has been considered harmful for neurons, but inflammatory state is not only associated with neurotoxic consequences, but also with neuroprotective effects, such as phagocytosis of dead neurons and clearance of debris. This brought to the idea of protective autoimmunity in the brain and to devise immunomodulatory therapies, aimed to specifically increase neuroprotective aspects of microglia. During the last years, several data supported the intrinsic neuroprotective function of microglia through the release of neuroprotective molecules. These data led to change the traditional view of microglia in neurodegenerative diseases: from the idea that these cells play an detrimental role for neurons due to a gain of their inflammatory function, to the proposal of a loss of microglial neuroprotective function as a causing factor in neuropathologies. This "microglial dysfunction hypothesis" points at the importance of understanding the mechanisms of microglial-mediated neuroprotection to develop new therapies for neurodegenerative diseases. In vitro models are very important to clarify the basic mechanisms of microglial-mediated neuroprotection, mainly for the identification of potentially effective neuroprotective molecules, and to design new approaches in a gene therapy set-up. Microglia could act as both a target and a vehicle for CNS gene delivery of neuroprotective factors, endogenously produced by microglia in physiological conditions, thus strengthening the microglial neuroprotective phenotype, even in a pathological situation.


Assuntos
Encéfalo/citologia , Encéfalo/patologia , Inflamação/patologia , Microglia/fisiologia , Fármacos Neuroprotetores/uso terapêutico , Animais , Anti-Inflamatórios/uso terapêutico , Autoimunidade/fisiologia , Terapia Genética/métodos , Humanos , Fatores Imunológicos/uso terapêutico , Inflamação/imunologia , Microglia/imunologia , Degeneração Neural/imunologia , Degeneração Neural/patologia , Doenças Neurodegenerativas/imunologia , Doenças Neurodegenerativas/patologia , Doenças Neurodegenerativas/terapia , Neurônios/patologia , Neurônios/fisiologia
12.
Curr Mol Pharmacol ; 2(1): 95-109, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20021450

RESUMO

Valproic acid (VPA, 2-propylpentanoic acid) has been widely used as an antiepileptic drug and for the therapy of bipolar disorders for several years. Its mechanism of action was initially found to be primarily related to neurotransmission and modulation of intracellular pathways. More recently, it emerged as an anti-neoplastic agent as well, by acting on cell growth, differentiation and apoptosis. Here, it mainly exerts its effect by regulating gene expression at the molecular level, through epigenetic mechanisms. In particular, it has been demonstrated the effect of VPA in chromatin remodeling, as VPA directly inhibits histone deacetylases (HDACs) activity. Interestingly, it has been observed that these biochemical and molecular pathways are involved not only in beneficial effect of VPA against epilepsy and malignancies, but they are also responsible for more general neuroprotective mechanisms. In particular, it has been demonstrated that VPA is neuroprotective in several models of neurodegenerative diseases. Moreover, due to the involvement of the VPA-affected mechanisms in complex behaviors, VPA is increasingly used as a psychotherapeutic agent. This review summarizes the more recent data on VPA neuroprotective mechanisms at the biochemical, molecular and epigenetic levels, focusing on both in vitro and in vivo models of neurodegenerative diseases. In particular, attention is paid to mechanisms by which VPA affects neuronal survival/apoptosis and proliferation/differentiation balance, as well as synaptic plasticity, by acting both directly on neurons and indirectly through glial cells. Perspective applications of the VPA neuroprotective potential in human neurodegenerative diseases are discussed, when relevant.


Assuntos
Inibidores de Histona Desacetilases/farmacologia , Fármacos Neuroprotetores/farmacologia , Ácido Valproico/farmacologia , Montagem e Desmontagem da Cromatina , Epigênese Genética , Histona Desacetilases/química , Histona Desacetilases/metabolismo , Humanos , Canais Iônicos/metabolismo , Doenças Neurodegenerativas/tratamento farmacológico , Transdução de Sinais , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
13.
Neurotoxicology ; 30(4): 605-12, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19635393

RESUMO

Copper dyshomeostasis is responsible for the neurological symptoms observed in the genetically inherited copper-dependent disorders (e.g., Menkes' and Wilson's diseases), but it has been also shown to have an important role in neurodegenerative diseases such as Alzheimer disease, prion diseases, Parkinson's disease and amyotrophic lateral sclerosis. It is widely accepted that increased extracellular copper levels contribute to neuronal pathogenic process by increasing the production of dangerous radical oxygen species, but the existence of other molecular mechanisms explaining copper neurotoxicity has not been investigated yet. By using a cellular model based on hypothalamic GN11 cultured neurons exposed to copper supplementation and by analysing the cell conditioned media, we try here to identify new molecular events explaining the association between extracellular copper accumulation and neuronal damages. We show here that increased extracellular copper levels produce a wide complex of alterations in the neuronal extracellular environment. In particular, copper affects the secretion of molecules involved in the protection of neurons against oxidative stress, such as cyclophilin A (CypA), or of molecules capable of shifting neuronal cells towards a pro-inflammatory state, such as IL-1alpha, IL-12, Rantes, neutrophil gelatinase-associated lipocalin (NGAL) and secreted protein acidic and rich in cysteine (SPARC). Copper pro-inflammatory properties have been confirmed by using primary neurons.


Assuntos
Cobre/metabolismo , Cobre/farmacologia , Citocinas/metabolismo , Neurônios/efeitos dos fármacos , Oligoelementos/metabolismo , Oligoelementos/farmacologia , Proteínas de Fase Aguda/metabolismo , Análise de Variância , Animais , Animais Recém-Nascidos , Células Cultivadas , Córtex Cerebral/citologia , Meios de Cultivo Condicionados/química , Ciclofilina A/metabolismo , Relação Dose-Resposta a Droga , Líquido Extracelular/efeitos dos fármacos , Líquido Extracelular/metabolismo , Hipotálamo/citologia , Lipocalina-2 , Lipocalinas/metabolismo , Camundongos , Osteonectina/metabolismo , Mapeamento de Peptídeos , Proteínas Proto-Oncogênicas/metabolismo , Ratos , Ratos Wistar , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Espectrofotometria Atômica
14.
J Neurochem ; 110(2): 545-56, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19457129

RESUMO

Microglia, the immune cells of the CNS, play essential roles in both physiological and pathological brain states. Here we have used an in vitro model to demonstrate neuroprotection of a 48 h-microglial conditioned medium (MCM) towards cerebellar granule neurons (CGNs) challenged with the neurotoxin 6-hydroxydopamine, which induces a Parkinson-like neurodegeneration, and to identify the protective factor(s). MCM nearly completely protects CGNs from 6-hydroxydopamine neurotoxicity and at least some of the protective factor(s) are peptidic in nature. While the fraction of the medium containing molecules < 30 kDa completely protects CGNs, fractions containing molecules < 10 kDa or > 10 kDa are not neuroprotective. We further demonstrate that microglia release high amounts of transforming growth factor-beta2 (TGF-beta2) and that its exogenous addition to the fraction of the medium not containing it (< 10 kDa) fully restores the neuroprotective action. Moreover, MCM neuroprotection is significantly counteracted by an inhibitor of TGF-beta2 transduction pathway. Our results identify TGF-beta2 as an essential neuroprotective factor released by microglia in its culture medium that requires to be fully effective the concomitant presence of other factor(s) of low molecular weight.


Assuntos
Meios de Cultivo Condicionados/farmacologia , Microglia/fisiologia , Neurônios/fisiologia , Fármacos Neuroprotetores/farmacologia , Oxidopamina/toxicidade , Fator de Crescimento Transformador beta2/fisiologia , Animais , Morte Celular/efeitos dos fármacos , Morte Celular/fisiologia , Células Cultivadas , Relação Dose-Resposta a Droga , Humanos , Peso Molecular , Neurônios/efeitos dos fármacos , Ratos , Ratos Wistar
15.
Neurosci Lett ; 448(1): 74-8, 2008 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-18950681

RESUMO

Microglia, the immune cells of the mammalian CNS, have often been indicated as dangerous effector cells for their activation in response to traumatic CNS injuries or immunological stimuli and for their involvement in many chronic neurodegenerative diseases. Recently, several in vitro and in vivo studies have emphasized that microglial activity is essential in promoting neuronal survival. We have tested the efficacy of media directly conditioned by microglia or conditioned by microglia after having been exposed to apoptotic neurons, towards neuroprotection of rat cerebellar granule cells (CGCs) challenged with staurosporine or glutamate. Apoptotic death of CGC caused by staurosporine, as well as by a mild excitotoxic stimulus delivered through sub-chronic glutamate treatment, was significantly counteracted by microglia conditioned media. On the other hand, an acute excitotoxic insult delivered through a short pulse of glutamate exposure in the absence of magnesium and resulting in a mix of apoptotic and necrotic death was only marginally counteracted by microglia conditioned media. The present results extend the available information regarding the neuroprotective role of microglia and support the usefulness of employing the culture approach for perspective identification of neuroprotective factors released by these cells. Furthermore, the use of media previously exposed to apoptotic neurons to elicit the neuroprotective response of microglia, indicate the feasibility to re-create also in the isolated culture conditions, at least some of the elements at the basis of neuron/microglia cross-talk.


Assuntos
Apoptose/efeitos dos fármacos , Cerebelo/citologia , Meios de Cultivo Condicionados/farmacologia , Microglia/química , Neurônios/efeitos dos fármacos , Análise de Variância , Animais , Animais Recém-Nascidos , Contagem de Células/métodos , Células Cultivadas , Inibidores Enzimáticos/toxicidade , Ácido Glutâmico/toxicidade , Ratos , Ratos Wistar , Estaurosporina/toxicidade , Sais de Tetrazólio , Tiazóis
16.
J Neurochem ; 103(2): 518-30, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17635667

RESUMO

The physiological role of alpha-synuclein, a protein found enriched in intraneuronal deposits characterizing Parkinson's disease, is debated. While its aggregation is usually considered linked to neuropathology, its normal function may be related to fundamental processes of synaptic transmission and plasticity. By using antisense oligonucleotide strategy, we report in this study that alpha-synuclein silencing in cultured cerebellar granule cells results in widespread death of these neurons, thus demonstrating an essential pro-survival role of the protein towards primary neurons. To study alpha-synuclein expression and processing in a Parkinson's disease model of neurotoxicity, we exposed differentiated cultures of cerebellar granule neurons to toxic concentrations of 6-hydroxydopamine (6-OHDA). This resulted in neuronal death accompanied by a decrease of the monomeric form of alpha-synuclein, which was due to both decreased synthesis of the protein and its increased mono-ubiquitination accompanied by nuclear translocation. The essential neuroprotective role of alpha-synuclein was confirmed by the fact that subchronic valproate treatment, which increases alpha-synuclein expression and prevents its nuclear translocation in cerebellar granule cells exposed to 6-OHDA, significantly protected these neurons from 6-OHDA insult. In agreement with the pro-survival role of alpha-synuclein in this model, subtoxic concentrations of alpha-synuclein antisense oligonucleotides, aggravated 6-OHDA toxicity towards granule neurons. Our results demonstrate that normal alpha-synuclein expression is essential for the viability of primary neurons and that its pro-survival role is abolished in 6-OHDA neurotoxic challenge. These results are relevant to more precisely define the role of alpha-synuclein in neuronal cells and to better understand its putative involvement in neurodegeneration.


Assuntos
Cerebelo/citologia , Cerebelo/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores , Oxidopamina/antagonistas & inibidores , Simpatolíticos/antagonistas & inibidores , alfa-Sinucleína/farmacologia , Animais , Apoptose/efeitos dos fármacos , Western Blotting , Morte Celular/efeitos dos fármacos , Morte Celular/genética , Núcleo Celular/química , Sobrevivência Celular/efeitos dos fármacos , Grânulos Citoplasmáticos/efeitos dos fármacos , Citosol/química , Inativação Gênica , Imunoprecipitação , Masculino , Oligonucleotídeos Antissenso/farmacologia , Oxidopamina/toxicidade , Complexo de Endopeptidases do Proteassoma/metabolismo , Ratos , Ratos Wistar , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Simpatolíticos/toxicidade , Translocação Genética/efeitos dos fármacos , Ácido Valproico/farmacologia , alfa-Sinucleína/antagonistas & inibidores , alfa-Sinucleína/genética
17.
Neurotoxicology ; 28(3): 637-44, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17386942

RESUMO

Lanceolin and stenodactylin, new type 2 ribosome-inactivating proteins (RIPs) from Adenia plants were recently isolated and their high cytotoxicity was described. Present experiments were performed to investigate the effect of these toxins on neural cells in culture and their in vivo retrograde transport and neurotoxicity in the central nervous system. The concentrations of lanceolin and stenodactylin inhibiting by 50% protein synthesis were in the 10(-11) and 10(-12) (cerebellar granule neurons), 10(-12) and 10(-13) (astrocytes), and 10(-13) (microglia) molar range, respectively. Both RIPs resulted toxic for glial cells in culture by MTT test, killing 50% of microglia, the most sensitive cell type, at concentrations around 10(-14)M. Stenodactylin was highly neurotoxic in vivo, when injected intracerebrally, and was retrogradely transported through axons projecting to the injected region. Stereotaxic injection of 1.3 ng toxin into the left dorsal hippocampus resulted in loss of cholinergic neurons in the ipsilateral medial septal nucleus, where cell bodies of neurons providing cholinergic input to the hippocampus are located. The retrograde transport of RIPs along neurons allows to perform experiments of target-selective lesioning, and can be exploited also to perform specific experiments of immunolesioning of selected neuronal populations.


Assuntos
Lectinas/toxicidade , N-Glicosil Hidrolases/toxicidade , Neuroglia/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Passifloraceae/química , Lectinas de Plantas/toxicidade , Animais , Animais Recém-Nascidos , Astrócitos/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Cerebelo/citologia , Cerebelo/efeitos dos fármacos , Colina O-Acetiltransferase/metabolismo , Leucina/metabolismo , Masculino , Proteínas do Tecido Nervoso/biossíntese , Ratos , Ratos Wistar , Proteínas Inativadoras de Ribossomos Tipo 2 , Sais de Tetrazólio , Tiazóis
18.
J Neuroimmunol ; 172(1-2): 104-11, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16376436

RESUMO

Microglial activation represents a well known aspect of several neuropathological diseases. However, little is known concerning the role of neurons in starting and modulating this process. In the present report, we demonstrate that differentiated, healthy neurons constitutively release in the culture medium substance(s) that are able to induce a state of overactivation in LPS-stimulated microglial cells. The neuronal factors synergize with LPS in stimulating synthesis and release of interleukin-1beta (IL-1beta) and nitric oxide by microglial cells. Prolonged exposure (72 h) to neuron-conditioned media in the presence of LPS induced microglial apoptosis, thus suggesting that neuronal overactivation of stimulated microglia favors their subsequent apoptotic elimination as part of a safety mechanism.


Assuntos
Comunicação Celular/fisiologia , Regulação da Expressão Gênica/efeitos dos fármacos , Lipopolissacarídeos/farmacologia , Microglia/efeitos dos fármacos , Neurônios/fisiologia , Animais , Animais Recém-Nascidos , Apoptose/efeitos dos fármacos , Western Blotting/métodos , Células Cultivadas , Cerebelo/citologia , Córtex Cerebral/citologia , Técnicas de Cocultura/métodos , Meios de Cultivo Condicionados/farmacologia , Interações Medicamentosas , Interleucina-1/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Nitritos/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Ratos , Ratos Wistar , Fatores de Tempo
19.
J Neuropathol Exp Neurol ; 62(4): 351-62, 2003 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-12722827

RESUMO

It is presently unknown what types of neuronal signals maintain microglial cells resting in the normal brain or control their activation in neuropathology. Recent data suggest that microglia activation induces apoptosis and that healthy neurons are controllers of the activation state and immune functions of microglia. In the present study we have evaluated, on microglial cells in cultures, whether neurons are able to affect their survival in resting conditions or upon activation with the bacterial endotoxin, lipopolysaccharide (LPS). We report that neuron-conditioned culture media induced apoptosis of LPS-stimulated, but not of unstimulated, microglia. This effect was, however, only present when conditioned media had been exposed to differentiated neurons and not to immature ones, and was absent when glutamate receptors had been pharmacologically blocked in neuronal cultures. The effect was also blocked by heat-inactivation of the conditioned media. Media conditioned with either differentiated or undifferentiated cerebellar granule neurons positively affected the survival of unstimulated microglial cells when the standard concentration of fetal bovine serum (10%) was included in the culture media. Our results highlight the ability of differentiated neurons to maintain a controlled inflammatory state through production of factor(s) favoring the apoptotic elimination of activated microglia. They also suggest that immature neurons may, on the contrary, favor the survival of microglia during development.


Assuntos
Apoptose/fisiologia , Comunicação Celular/fisiologia , Sobrevivência Celular/fisiologia , Encefalite/metabolismo , Gliose/metabolismo , Microglia/metabolismo , Neurônios/metabolismo , Animais , Animais Recém-Nascidos , Apoptose/efeitos dos fármacos , Diferenciação Celular/fisiologia , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Córtex Cerebelar/crescimento & desenvolvimento , Córtex Cerebelar/metabolismo , Meios de Cultivo Condicionados/metabolismo , Meios de Cultivo Condicionados/farmacologia , Encefalite/patologia , Encefalite/fisiopatologia , Gliose/induzido quimicamente , Gliose/fisiopatologia , Temperatura Alta/efeitos adversos , Microglia/efeitos dos fármacos , Neuropeptídeos/antagonistas & inibidores , Neuropeptídeos/metabolismo , Ratos , Ratos Wistar , Receptores de Glutamato/efeitos dos fármacos , Receptores de Glutamato/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
20.
Rev Neurosci ; 13(3): 221-42, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-12405226

RESUMO

Microglia represent a major cellular component of the brain, where they constitute a widely distributed network of immunoprotective cells. During the last decades, it has become clear that the functions traditionally ascribed to microglia, i.e. to dispose of dead cells and debris and to mediate brain inflammatory states, are only a fraction of a much wider repertoire of functions spanning from brain development to aging and neuropathology. The aim of the present survey is to critically discuss some of these functions, focusing in particular on the reciprocal microglia-neuron interactions and on the complex signaling systems subserving them. We consider first some of the functional interactions dealing with invasion, proliferation and migration of microglia as well as with the establishment of the initial blueprint of neural circuits in the developing brain. The signals related to the suppression of immunological properties of microglia by neurons in the healthy brain, and the derangement from this physiological equilibrium in aging and diseases, are then examined. Finally, we make a closer examination of the reciprocal signaling between damaged neurons and microglia and, on these bases, we propose that microglial activation, consequent to neuronal injury, is primarily aimed at neuroprotection. The loss of specific communication between damaged neurons and microglia is viewed as responsible for the turning of microglia to a hyperactivated state, which allows them to escape neuronal control and to give rise to persistent inflammation, resulting in exacerbation of neuropathology. The data surveyed here point at microglial-neuron interactions as the basis of a complex network of signals conveying messages with high information content and regulating the most important aspects of brain function. This network shares similar features with some fundamental principles governing the activity of brain circuits: it is provided with memory and it continuously evolves in relation to the flow of time and information.


Assuntos
Lesões Encefálicas/fisiopatologia , Comunicação Celular/fisiologia , Microglia/fisiologia , Neurônios/fisiologia , Animais , Encéfalo/crescimento & desenvolvimento , Encéfalo/fisiologia , Encéfalo/fisiopatologia , Sobrevivência Celular/fisiologia , Regulação para Baixo , Fatores de Crescimento Neural/fisiologia , Fagocitose/fisiologia , Transdução de Sinais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...