Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 117(14): 7702-7711, 2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32209665

RESUMO

Increased human water use combined with climate change have aggravated water scarcity from the regional to global scales. However, the lack of spatially detailed datasets limits our understanding of the historical water use trend and its key drivers. Here, we present a survey-based reconstruction of China's sectoral water use in 341 prefectures during 1965 to 2013. The data indicate that water use has doubled during the entire study period, yet with a widespread slowdown of the growth rates from 10.66 km3⋅y-2 before 1975 to 6.23 km3⋅y-2 in 1975 to 1992, and further down to 3.59 km3⋅y-2 afterward. These decelerations were attributed to reduced water use intensities of irrigation and industry, which partly offset the increase driven by pronounced socioeconomic development (i.e., economic growth, population growth, and structural transitions) by 55% in 1975 to 1992 and 83% after 1992. Adoptions for highly efficient irrigation and industrial water recycling technologies explained most of the observed reduction of water use intensities across China. These findings challenge conventional views about an acceleration in water use in China and highlight the opposing roles of different drivers for water use projections.


Assuntos
Desaceleração , Abastecimento de Água , Água , China , Geografia , Humanos , Fatores Socioeconômicos
2.
Sci Rep ; 9(1): 8024, 2019 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-31142761

RESUMO

Precipitation minus evaporation over continents is the freshwater flux which can be sustainably exploited by mankind. Over a catchment and longer time periods, this flux is also the amount of water which flows into the ocean. An essential question for semi-arid areas of the world is how well this freshwater flux can be estimated and predicted to evolve under climate change and human water use. Knowing this flux is thus an essential element in regional water resources management. Here we examine this question over the catchment of the Mediterranean Sea. Using a novel data assimilation methodology that incorporates observed discharges of rivers in a land surface model, new estimates of the freshwater flux to the Mediterranean Sea for the period 1980-2013 are proposed. We find that more freshwater (40-60%) flows into the sea than previously estimated. The hypothesis we advance is that previous estimates have underestimated the discharges of the large number of unmonitored coastal basins and neglected submarine ground water flows. The proposed error bars on the estimate indicate that the degrading river gauging station network limits our ability to monitor this branch of the water cycle reliably. Nevertheless, the uncertainty is small enough to allow the identification of regions in which non-climatic decreases in the freshwater flows exist over the period.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...