Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pharmacogenetics ; 11(8): 671-8, 2001 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-11692075

RESUMO

The zeta class glutathione transferases (GSTs) are known to catalyse the isomerization of maleylacetoacetate (MAA) to fumarylacetoacetate (FAA), and the biotransformation of dichloroacetic acid to glyoxylate. A new allele of human GSTZ1, characterized by a Thr82Met substitution and termed GSTZ1d, has been identified by analysis of the expressed sequence tag (EST) database. In European Australians, GSTZ1d occurs with a frequency of 0.16. Like GSTZ1b-1b and GSTZ1c-1c, the new isoform has low activity with dichloroacetic acid compared with GSTZ1a-1a. The low activity appears to be due to a high sensitivity to substrate inhibition. The maleylacetoacetate isomerase (MAAI) activity of all known variants was compared using maleylacetone as a substrate. Significant differences in activity were noted, with GSTZ1a-1a having a notably lower catalytic efficiency. The unusual catalytic properties of GSTZ1a-1a in both reactions suggest that its characteristic arginine at position 42 plays a significant role in the regulation of substrate access and/or product release. The different amino acid substitutions have been mapped on to the recently determined crystal structure of GSTZ1-1 to evaluate and explain their influence on function.


Assuntos
Alelos , Glutationa Transferase/genética , cis-trans-Isomerases/genética , Adolescente , Adulto , Idoso , Substituição de Aminoácidos/genética , Arginina/genética , Feminino , Ácido Glutâmico , Glicina/genética , Humanos , Leucina/genética , Lisina/genética , Masculino , Metionina/genética , Pessoa de Meia-Idade , Prolina/genética , Treonina/genética
2.
Biochemistry ; 40(6): 1567-76, 2001 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-11327815

RESUMO

Maleylacetoacetate isomerase (MAAI), a key enzyme in the metabolic degradation of phenylalanine and tyrosine, catalyzes the glutathione-dependent isomerization of maleylacetoacetate to fumarylacetoacetate. Deficiencies in enzymes along the degradation pathway lead to serious diseases including phenylketonuria, alkaptonuria, and the fatal disease, hereditary tyrosinemia type I. The structure of MAAI might prove useful in the design of inhibitors that could be used in the clinical management of the latter disease. Here we report the crystal structure of human MAAI at 1.9 A resolution in complex with glutathione and a sulfate ion which mimics substrate binding. The enzyme has previously been shown to belong to the zeta class of the glutathione S-transferase (GST) superfamily based on limited sequence similarity. The structure of MAAI shows that it does adopt the GST canonical fold but with a number of functionally important differences. The structure provides insights into the molecular bases of the remarkable array of different reactions the enzyme is capable of performing including isomerization, oxygenation, dehalogenation, peroxidation, and transferase activity.


Assuntos
Domínio Catalítico , Glutationa Transferase/química , cis-trans-Isomerases/química , Sequência de Aminoácidos , Sítios de Ligação , Catálise , Cristalografia por Raios X , Dimerização , Glutationa Transferase/metabolismo , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Dobramento de Proteína , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Sulfatos/metabolismo , cis-trans-Isomerases/metabolismo
3.
Biochem J ; 351 Pt 2: 341-6, 2000 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-11023819

RESUMO

Glutathione S-transferases (GSTs) normally use hydroxy-group-containing residues in the N-terminal domain of the enzyme for stabilizing the activated form of the co-substrate, glutathione. However, previous mutagenesis studies have shown that this is not true for Beta class GSTs and thus the origin of the stabilization remains a mystery. The recently determined crystal structure of Proteus mirabilis GST B1-1 (PmGST B1-1) suggested that the stabilizing role might be fulfilled in Beta class GSTs by one or more residues in the C-terminal domain of the enzyme. To test this hypothesis we mutated His(106) and Lys(107) of PmGST B1-1 to investigate their possible role in the enzyme's catalytic activity. His(106) was mutated to Ala, Asn and Phe, and Lys(107) to Ala and Arg. The effects of the replacement on the activity, thermal stability and antibiotic-binding capacity of the enzyme were examined. The results are consistent with the involvement of His(106) and Lys(107) in interacting with glutathione at the active site but these residues do not contribute significantly to catalysis, folding or antibiotic binding.


Assuntos
Glutationa Transferase/química , Alanina/química , Sequência de Aminoácidos , Antibacterianos/farmacologia , Arginina/química , Asparagina/química , Sítios de Ligação , Catálise , Sequência Conservada , Relação Dose-Resposta a Droga , Escherichia coli/metabolismo , Guanidina/farmacologia , Histidina/química , Lisina/química , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Fenilalanina/química , Ligação Proteica , Conformação Proteica , Dobramento de Proteína , Estrutura Secundária de Proteína , Proteus mirabilis/enzimologia , Rifamicinas/farmacologia , Espectrometria de Fluorescência , Temperatura , Fatores de Tempo
4.
Biochem J ; 349(Pt 1): 275-9, 2000 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-10861239

RESUMO

Patients with hereditary glutathione synthetase (GS) (EC 6.3.2.3) deficiency present with variable clinical pictures, presumably related to the nature of the mutations involved. In order to elucidate the relationship between genotype, enzyme function and clinical phenotype, we have characterized enzyme kinetic parameters of missense mutations R125C, R267W, R330C and G464V from patients with GS deficiency. One of the mutations predominantly affected the K(m) value, with decreased affinity for glycine, two mutations influenced both K(m) and V(max) values, and one mutation reduced the stability of the enzyme. This characterization agrees well with predictions based on the recently reported crystal structure of human GS. Thus our data indicate that different mutations can affect the catalytic capacity of GS by decreasing substrate affinity, maximal velocity or enzyme stability.


Assuntos
Glutationa Sintase/química , Glutationa Sintase/deficiência , Mutação de Sentido Incorreto , Cromatografia em Agarose , Glutationa Sintase/isolamento & purificação , Humanos , Cinética , Modelos Moleculares , Mutagênese , Mutação , Conformação Proteica , Estrutura Secundária de Proteína
5.
EMBO J ; 18(12): 3204-13, 1999 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-10369661

RESUMO

Glutathione synthetase (GS) catalyses the production of glutathione from gamma-glutamylcysteine and glycine in an ATP-dependent manner. Malfunctioning of GS results in disorders including metabolic acidosis, 5-oxoprolinuria, neurological dysfunction, haemolytic anaemia and in some cases is probably lethal. Here we report the crystal structure of human GS (hGS) at 2.1 A resolution in complex with ADP, two magnesium ions, a sulfate ion and glutathione. The structure indicates that hGS belongs to the recently identified ATP-grasp superfamily, although it displays no detectable sequence identity with other family members including its bacterial counterpart, Escherichia coli GS. The difficulty in identifying hGS as a member of the family is due in part to a rare gene permutation which has resulted in a circular shift of the conserved secondary structure elements in hGS with respect to the other known ATP-grasp proteins. Nevertheless, it appears likely that the enzyme shares the same general catalytic mechanism as other ligases. The possibility of cyclic permutations provides an insight into the evolution of this family and will probably lead to the identification of new members. Mutations that lead to GS deficiency have been mapped onto the structure, providing a molecular basis for understanding their effects.


Assuntos
Glutationa Sintase/química , Glutationa Sintase/genética , Mutação , Difosfato de Adenosina/química , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Sequência Conservada/genética , Cristalização , Cristalografia por Raios X , Dimerização , Evolução Molecular , Genes/genética , Glutationa/química , Glutationa/metabolismo , Glutationa Sintase/deficiência , Glutationa Sintase/metabolismo , Humanos , Magnésio/química , Magnésio/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Fosfatos/química , Fosfatos/metabolismo , Estrutura Secundária de Proteína , Sulfatos/química , Sulfatos/metabolismo
6.
Structure ; 6(6): 721-34, 1998 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-9655824

RESUMO

BACKGROUND: Glutathione S-transferases (GSTs) are a multifunctional group of enzymes, widely distributed in aerobic organisms, that have a critical role in the cellular detoxification process. Unlike their mammalian counterparts, bacterial GSTs often catalyze quite specific reactions, suggesting that their roles in bacteria might be different. The GST from Proteus mirabilis (PmGST B1-1) is known to bind certain antibiotics tightly and reduce the antimicrobial activity of beta-lactam drugs. Hence, bacterial GSTs may play a part in bacterial resistance towards antibiotics and are the subject of intense interest. RESULTS: Here we present the structure of a bacterial GST, PmGST B1-1, which has been determined from two different crystal forms. The enzyme adopts the canonical GST fold although it shares less than 20% sequence identity with GSTs from higher organisms. The most surprising aspect of the structure is the observation that the substrate, glutathione, is covalently bound to Cys 10 of the enzyme. In addition, the highly structurally conserved N-terminal domain is found to have an additional beta strand. CONCLUSIONS: The crystal structure of PmGST B1-1 has highlighted the importance of a cysteine residue in the catalytic cycle. Sequence analyses suggest that a number of other GSTs share this property, leading us to propose a new class of GSTs - the beta class. The data suggest that the in vivo role of the beta class GSTs could be as metabolic or redox enzymes rather than conjugating enzymes. Compelling evidence is presented that the theta class of GSTs evolved from an ancestral member of the thioredoxin superfamily.


Assuntos
Proteínas de Bactérias/química , Dissulfetos/química , Evolução Molecular , Glutationa Transferase/química , Proteus mirabilis/enzimologia , Sequência de Aminoácidos , Proteínas de Bactérias/classificação , Proteínas de Bactérias/genética , Sítios de Ligação , Sequência Conservada , Cristalografia por Raios X , Resistência Microbiana a Medicamentos , Glutationa/metabolismo , Glutationa Transferase/classificação , Glutationa Transferase/genética , Dados de Sequência Molecular , Dobramento de Proteína , Homologia de Sequência de Aminoácidos , Tiorredoxinas/química , Tiorredoxinas/genética
7.
Fold Des ; 2(3): S7-11, 1997.
Artigo em Inglês | MEDLINE | ID: mdl-9218959

RESUMO

Elongation factor Tu (EF-Tu) is a G-protein which, in its active GTP conformation, protects and carries aminoacylated tRNAs (aa-tRNAs) to the ribosome during protein biosynthesis. EF-Tu consists of three structural domains of which the N-terminal domain consists of two special regions (switch I and switch II) which are structurally dependent on the type of the bound nucleotide. Structural studies of the complete functional cycle of EF-Tu reveal that it undergoes rather spectacular conformational changes when activated from the EF-Tu.GDP form to the EF-Tu.GTP form. In its active form, EF-Tu.GTP without much further structural change interacts with aa-tRNAs in the so-called ternary complex. The conformational changes of EF-Tu involve rearrangements of the secondary structures of both the switch I and switch II regions. As the switch II region forms part of the interface between domains 1 and 3, its structural rearrangement results in a very large change of the position of domain 1 relative to domains 2 and 3. The overall shape of the ternary complex is surprisingly similar to the overall shape of elongation factor G (EF-G). Thus, three domains of the protein EF-G seem to mimic the tRNA part of the ternary complex. This macromolecular mimicry has profound implications for the function of the elongation factors on the ribosome.


Assuntos
Mimetismo Molecular , Biossíntese de Proteínas , Sequência de Aminoácidos , Guanosina Difosfato/metabolismo , Guanosina Trifosfato/metabolismo , Substâncias Macromoleculares , Modelos Moleculares , Dados de Sequência Molecular , Elongação Traducional da Cadeia Peptídica , Fator Tu de Elongação de Peptídeos/química , Fator Tu de Elongação de Peptídeos/genética , Fator Tu de Elongação de Peptídeos/metabolismo , Dobramento de Proteína , Estrutura Secundária de Proteína , Homologia de Sequência de Aminoácidos
8.
Structure ; 4(10): 1141-51, 1996 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-8939739

RESUMO

BACKGROUND: Elongation factor Tu (EF-Tu) in its GTP conformation is a carrier of aminoacylated tRNAs (aa-tRNAs) to the ribosomal A site during protein biosynthesis. The ribosome triggers GTP hydrolysis, resulting in the dissociation of EF-Tu-GDP from the ribosome. The affinity of EF-Tu for other molecules involved in this process, some of which are unknown, is regulated by two regions (Switch I and Switch II) that have different conformations in the GTP and GDP forms. The structure of the GDP form of EF-Tu is known only as a trypsin-modified fragment, which lacks the Switch I, or effector, domain. The aim of this work was to establish the overall structure of intact EF-Tu-GDP, in particular the structure of the effector domain. RESULTS: The crystal structures of intact EF-Tu-GDP from Thermus aquaticus and Escherichia coli have been determined at resolutions of 2.7 A and 3.8 A, respectively. The structures confirm the domain orientation previously found in the structure of partially trypsin-digested EF-Tu-GDP. The structures of the effector region in T. aquaticus and E. coli EF-Tu-GDP are very similar. The C-terminal part of the effector region of EF-Tu-GDP is a beta hairpin; in EF-Tu-GTP, this region forms an alpha helix. This conformational change is not a consequence of crystal packing. CONCLUSIONS: EF-Tu undergoes major conformational changes upon GTP hydrolysis. Unlike other GTP-binding proteins, EF-Tu exhibits a dramatic conformational change in the effector region, involving an unwinding of a small helix and the formation of a beta hairpin structure. This change is presumably involved in triggering the release of tRNA, and EF-Tu, from the ribosome.


Assuntos
Proteínas de Bactérias/química , Guanosina Difosfato/química , Fator Tu de Elongação de Peptídeos/química , Estrutura Secundária de Proteína , Sítios de Ligação , Simulação por Computador , Cristalografia , Escherichia coli , Modelos Moleculares , Dados de Sequência Molecular , Especificidade da Espécie , Thermus
11.
Science ; 270(5241): 1464-72, 1995 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-7491491

RESUMO

The structure of the ternary complex consisting of yeast phenylalanyl-transfer RNA (Phe-tRNAPhe), Thermus aquaticus elongation factor Tu (EF-Tu), and the guanosine triphosphate (GTP) analog GDPNP was determined by x-ray crystallography at 2.7 angstrom resolution. The ternary complex participates in placing the amino acids in their correct order when messenger RNA is translated into a protein sequence on the ribosome. The EF-Tu-GDPNP component binds to one side of the acceptor helix of Phe-tRNAPhe involving all three domains of EF-Tu. Binding sites for the phenylalanylated CCA end and the phosphorylated 5' end are located at domain interfaces, whereas the T stem interacts with the surface of the beta-barrel domain 3. The binding involves many conserved residues in EF-Tu. The overall shape of the ternary complex is similar to that of the translocation factor, EF-G-GDP, and this suggests a novel mechanism involving "molecular mimicry" in the translational apparatus.


Assuntos
Guanosina Trifosfato/análogos & derivados , Fator Tu de Elongação de Peptídeos/química , Aminoacil-RNA de Transferência/química , Sequência de Aminoácidos , Anticódon , Sequência de Bases , Sítios de Ligação , Cristalografia por Raios X , Guanosina Difosfato/química , Guanosina Difosfato/metabolismo , Guanosina Trifosfato/química , Guanosina Trifosfato/metabolismo , Histidina/metabolismo , Lisina/metabolismo , Modelos Moleculares , Mimetismo Molecular , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Fator G para Elongação de Peptídeos , Fator Tu de Elongação de Peptídeos/metabolismo , Fatores de Alongamento de Peptídeos/química , Fatores de Alongamento de Peptídeos/metabolismo , Fatores de Iniciação de Peptídeos/química , Fatores de Iniciação de Peptídeos/metabolismo , Fatores de Terminação de Peptídeos/química , Fatores de Terminação de Peptídeos/metabolismo , Fator de Iniciação 2 em Procariotos , Biossíntese de Proteínas , Conformação Proteica , Estrutura Secundária de Proteína , Aminoacil-RNA de Transferência/metabolismo , Ribossomos/metabolismo , Thermus
12.
FEBS Lett ; 356(2-3): 165-8, 1994 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-7805830

RESUMO

Elongation factor Tu (EF-Tu) is the most abundant protein in prokaryotic cells. Its general function in protein biosynthesis is well established. It is a member of the large family of G-proteins, all of which bind guanosine phosphates (GDP or GTP) as cofactors. In its active GTP bound state EF-Tu binds aminoacylated tRNA (aa-tRNA) forming the ternary complex EF-Tu:GTP:aa-tRNA. The ternary complex interacts with the ribosome where the anticodon on tRNA recognises a codon on mRNA, GTPase activity is induced and inactive EF-Tu:GDP is released. Here we report the successful crystallization of a ternary complex of Thermus aquaticus EF-Tu:GDPNP and yeast Phe-tRNA(Phe) after its purification by HPLC.


Assuntos
Guanosina Trifosfato/química , Fator Tu de Elongação de Peptídeos/química , RNA de Transferência de Fenilalanina/química , Cromatografia em Gel , Cromatografia Líquida de Alta Pressão , Cristalização , Cristalografia por Raios X , Eletroforese em Gel de Poliacrilamida , Guanosina Trifosfato/isolamento & purificação , Guanosina Trifosfato/metabolismo , Guanilil Imidodifosfato/metabolismo , Fator Tu de Elongação de Peptídeos/isolamento & purificação , Fator Tu de Elongação de Peptídeos/metabolismo , RNA de Transferência de Fenilalanina/isolamento & purificação , RNA de Transferência de Fenilalanina/metabolismo , Saccharomyces cerevisiae/metabolismo , Thermus/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...